Version 2
Interpreting Reactor Antineutrino Anomalies with STEREO data

The STEREO collaboration Almazán, H. ; Bernard, L. ; Blanchet, A. ; et al.
Nature 613 (2023) 257-261, 2023.
Inspire Record 2165649 DOI 10.17182/hepdata.132368

Anomalies in past neutrino measurements have led to the discovery that these particles have non-zero mass and oscillate between their three flavors when they propagate. In the 2010's, similar anomalies observed in the antineutrino spectra emitted by nuclear reactors have triggered the hypothesis of the existence of a supplementary neutrino state that would be sterile i.e. not interacting via the weak interaction. The STEREO experiment was designed to study this scientific case that would potentially extend the Standard Model of Particle Physics. Here we present a complete study based on our full set of data with significantly improved sensitivity. Installed at the ILL (Institut Laue Langevin) research reactor, STEREO has accurately measured the antineutrino energy spectrum associated to the fission of 235U. This measurement confirms the anomalies whereas, thanks to the segmentation of the STEREO detector and its very short mean distance to the core (10~m), the same data reject the hypothesis of a light sterile neutrino. Such a direct measurement of the antineutrino energy spectrum suggests instead that biases in the nuclear experimental data used for the predictions are at the origin of the anomalies. Our result supports the neutrino content of the Standard Model and establishes a new reference for the 235U antineutrino energy spectrum. We anticipate that this result will allow to progress towards finer tests of the fundamental properties of neutrinos but also to benchmark models and nuclear data of interest for reactor physics and for observations of astrophysical or geo-neutrinos.

17 data tables

12B prediction used for the control of the energy scale. The three most intense beta decay branches of 12B have been taken into account, covering 99.94% of the total decay rate. The corresponding spectra are given in bins of 50 keV, normalized to their respective branching ratio. The [no rad. corr] notation stands for the fact that we didn't include the radiative corrections in our nominal simulation, as all radiated photons should be absorbed in the STEREO target volume. However the full effect of these corrections is included in the uncertainty of the predicted spectrum. It can be deduced from the comparison with the full calculation of the beta branches given here as well.

STEREO IBD Spectrum for phase-II and phase-III. The spectra are given in nu/day and normalized to reactor power in cm2/fission/MeV with 22 250keV-wide measured-energy bins, ranging from 1.625MeV (lower edge of lowest bin) to 7.125 MeV (upper edge of highest bin). The normalized rates (cm2/fission/MeV) are split between U5 and non-U5 components (Aluminium and Off-Equilibrium corrections).

STEREO Global Covariance Matrix for phase-II and phase-III. The matrix is given as a 44x44 matrix, with 44 bins for phase-II (bins 1-22) and phase-III (bins 23-44) corresponding to the prompt spectra with 22 250-keV bins, ranging from 1.625 to 7.125 MeV; it is expressed in (cm2/fission/MeV)².

More…

Version 3
Improved Sterile Neutrino Constraints from the STEREO Experiment with 179 Days of Reactor-On Data

The STEREO collaboration Almazán, H. ; Bernard, L. ; Blanchet, A. ; et al.
Phys.Rev.D 102 (2020) 052002, 2020.
Inspire Record 1770821 DOI 10.17182/hepdata.92323

The STEREO experiment is a very short baseline reactor antineutrino experiment. It is designed to test the hypothesis of light sterile neutrinos being the cause of a deficit of the observed antineutrino interaction rate at short baselines with respect to the predicted rate, known as the reactor antineutrino anomaly. The STEREO experiment measures the antineutrino energy spectrum in six identical detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this article, results from 179 days of reactor turned on and 235 days of reactor turned off are reported at a high degree of detail. The current results include improvements in the modelling of detector optical properties and the gamma-cascade after neutron captures by gadolinium, the treatment of backgrounds, and the statistical method of the oscillation analysis. Using a direct comparison between antineutrino spectra of all cells, largely independent of any flux prediction, we find the data compatible with the null oscillation hypothesis. The best-fit point of the reactor antineutrino anomaly is rejected at more than 99.9% C.L.

25 data tables

Data from Figure 30 – Relative comparison between the estimated rates of IBD events $A_{l,i}$ (for cell $l$ and energy bin $i$) and the re-normalised no-oscillation model $\phi_i M_{l,i}(\sin^2(2\theta_{ee}) = 0)$ as a function of reconstructed energy $E_\text{rec}$ after a fit to phase-I+II data. Due to less statistics, the highest energy bin is excluded from the oscillation analysis in phase-I. For technical reasons, its value is set equal to zero in this dataset. A full graphical presentation can be downloaded at "Resources" for reference.

Data from Figure 30 – Relative comparison between the estimated rates of IBD events $A_{l,i}$ (for cell $l$ and energy bin $i$) and the fitted no-oscillation model $M_{l,i}(0, 0, \vec{\alpha})~\phi_i$ as a function of reconstructed energy $E_\text{rec}$ after a fit to phase-I+II data. Due to less statistics, the highest energy bin is excluded from the oscillation analysis in phase-I. For technical reasons, its value is set equal to zero in this dataset. A graphical presentation can be downloaded at "Resources" for reference.

Data from Figure 30 – Relative comparison between the estimated rates of IBD events $A_{l,i}$ (for cell $l$ and energy bin $i$) and the fitted no-oscillation model $M_{l,i}(0, 0, \vec{\alpha})~\phi_i$ as a function of reconstructed energy $E_\text{rec}$ after a fit to phase-I+II data. Due to less statistics, the highest energy bin is excluded from the oscillation analysis in phase-I. For technical reasons, its value is set equal to zero in this dataset. A graphical presentation can be downloaded at "Resources" for reference.

More…

First antineutrino energy spectrum from $^{235}$U fissions with the STEREO detector at ILL

The STEREO collaboration Almazán, H. ; Bernard, L. ; Blanchet, A. ; et al.
J.Phys.G 48 (2021) 075107, 2021.
Inspire Record 1821378 DOI 10.17182/hepdata.99805

This article reports the measurement of the $^{235}$U-induced antineutrino spectrum shape by the STEREO experiment. 43'000 antineutrinos have been detected at about 10 m from the highly enriched core of the ILL reactor during 118 full days equivalent at nominal power. The measured inverse beta decay spectrum is unfolded to provide a pure $^{235}$U spectrum in antineutrino energy. A careful study of the unfolding procedure, including a cross-validation by an independent framework, has shown that no major biases are introduced by the method. A significant local distortion is found with respect to predictions around $E_\nu \simeq 5.3$ MeV. A gaussian fit of this local excess leads to an amplitude of $A = 12.1 \pm 3.4\%$ (3.5$\sigma$).

7 data tables

Data from Figure 13 – Measured IBD yield spectrum and area-normalized HM-based prediction. Here, error bars inlude only uncorrelated uncertainties, namely statistics, time-evolution systematic, reactor background systematic. This uncorrelated uncertainty is $\sigma_j$ in eqn.(14). The full covariance matrix is provided in another entry.

Total covariance matrix of the measured spectrum, including statistics and all systematic uncertainties. It is denoted $V_\text{pr}$ in eqn.(18).

STEREO Detector Response Matrix, sampled using STEREO's simulation using neutrinos with energy distributed according to HFR's IBD yield prediction. The matrix is given as a 200x22 matrix, with 200 50keV-wide $E_\nu$ bins (centers ranging from 0.05 to 10 MeV) and 22 250keV-wide measured-energy bins corresponding to measured data. The matrix is not normalized; desired normalization (e.g., $\sum_j R_{ij} = e_i$ where $e_i$ is the efficiency) has to be applied before the matrix can be used.

More…

Near threshold production of the eta meson via the quasi-free pn --> pn eta reaction

Moskal, P. ; Czyzykiewicz, R. ; Adam, H.-H. ; et al.
Phys.Rev.C 79 (2009) 015208, 2009.
Inspire Record 789961 DOI 10.17182/hepdata.50529

Total cross sections for the quasi-free pn --> pn eta reaction in the range from the kinematical threshold up to 20 MeV excess energy have been determined. At threshold they exceed corresponding cross sections for the pp --> pp eta reaction by a factor of about three in contrast to the factor of six established for higher excess energies. To large extent, the observed decrease of the ratio sigma(pn --> pn eta)/sigma(pp --> pp eta) towards threshold may be assigned to the different energy dependence of the proton-proton and proton-neutron final state interactions. The experiment has been conducted using a proton beam of the cooler synchrotron COSY and a cluster jet deuteron target. The proton-neutron reactions were tagged by the spectator proton whose momentum was measured for each event. Protons and neutron outgoing from the pn --> pn eta reaction have been registered by means of the COSY-11 facility, an apparatus dedicated for threshold meson production.

1 data table

Total cross section measurement for P N --> P N ETA.


Mechanism of the close-to-threshold production of the eta meson.

Czyzykiewicz, R. ; Moskal, P. ; Adam, H.-H. ; et al.
Phys.Rev.Lett. 98 (2007) 122003, 2007.
Inspire Record 731185 DOI 10.17182/hepdata.41775

Measurements of the analysing power for the p(pol)p --> ppeta reaction have been performed in the close-to-threshold energy region at beam momenta of p_{beam}=2.010 and 2.085 GeV/c, corresponding to excess energies of Q=10 and 36 MeV, respectively. The determined analysing power is essentially consistent with zero implying that the eta meson is produced predominantly in the s-wave at both excess energies. The angular dependence of the analysing power, combined with the hitherto determined isospin dependence of the total cross section for the eta meson production in nucleon-nucleon collisions, reveal a statistically significant indication that the excitation of the nucleon to the S_{11}(1535) resonance, the process which intermediates the production of the eta meson, is predominantly due to the exchange of the pi meson between the colliding nucleons.

2 data tables

Analysing power measurements for excess energy 10 MeV.

Analysing power measurements for excess energy 36 MeV.


Kaon pair production close to threshold.

Winter, P. ; Wolke, M. ; Adam, H.-H. ; et al.
Phys.Lett.B 635 (2006) 23-29, 2006.
Inspire Record 710616 DOI 10.17182/hepdata.41803

The total cross section of the reaction pp->ppK+K- has been measured at excess energies Q=10 MeV and 28 MeV with the magnetic spectrometer COSY-11. The new data show a significant enhancement of the total cross section compared to pure phase space expectations or calculations within a one boson exchange model. In addition, we present invariant mass spectra of two particle subsystems. While the K+K- system is rather constant for different invariant masses, there is an enhancement in the pK- system towards lower masses which could at least be partially connected to the influence of the Lambda(1405) resonance.

1 data table

Total cross sections.


Threshold hyperon production in proton proton collisions at COSY-11.

Rozek, T. ; Grzonka, D. ; Adam, H.-H. ; et al.
Phys.Lett.B 643 (2006) 251-256, 2006.
Inspire Record 722758 DOI 10.17182/hepdata.31512

Sigma+ hyperon production was measured at the COSY-11 spectrometer via the p p --> n K+ Sigma+ reaction at excess energies of Q = 13 MeV and Q = 60 MeV. These measurements continue systematic hyperon production studies via the p p --> p K+ Lambda/Sigma0 reactions where a strong decrease of the cross section ratio close-to-threshold was observed. In order to verify models developed for the description of the Lambda and Sigma0 production we have performed the measurement on the Sigma+ hyperon and found unexpectedly that the total cross section is by more than one order of magnitude larger than predicted by all anticipated models. After the reconstruction of the kaon and neutron four momenta, the Sigma+ is identified via the missing mass technique. Details of the method and the measurement will be given and discussed in view of theoretical models.

1 data table

Cross section for the reaction P P --> N K+ SIGMA+ at excess energies of 13 and 60 MeV.


Measurement of the $dp \rightarrow {^3He}}\eta$ reaction near threshold\author{J. Smyrski\corauthref{corr}

Smyrski, J. ; Adam, H.-H. ; Budzanowski, A. ; et al.
Phys.Lett.B 649 (2007) 258-262, 2007.
Inspire Record 745085 DOI 10.17182/hepdata.31470

Total and differential cross sections for the dp --> 3He eta reaction have been measured near threshold for 3He center-of-mass momenta in the range from 17.1 MeV/c to 87.5 MeV/c. The data were taken during a slow ramping of the COSY internal deuteron beam scattered on a proton target detecting the 3He ejectiles with the COSY-11 facility. The forward-backward asymmetries of the differential cross sections deviate clearly from zero for center-of-mass momenta above 50 MeV/c indicating the presence of higher partial waves in the final state. Below 50 MeV/c center-of-mass momenta a fit of the final state enhancement factor to the data of the total cross sections results in the 3He eta scattering length of a = |2.9 +/- 0.6| + i (3.2 +/- 0.4) fm.

2 data tables

Total cross section for the reaction DEUT P --> HE3 ETA.

Forward-Backward asymmetry for the reaction DEUT P --> HE3 ETA.


A Comparative Investigation of Low Mass (pi+ omega) and (K- omega) Systems at Various Energies

The Aachen-Berlin-Bonn-CERN-Heidelberg-London-Vienna collaboration Otter, G. ; Becker, L ; Dornan, P J ; et al.
Nucl.Phys.B 87 (1975) 189-206, 1975.
Inspire Record 91251 DOI 10.17182/hepdata.32066

A comparison is made of the properties and production mechanisms of the π + ω and K − ω systems produced in the reactions π + p → π + ω p at 4, 5, 8 and 16 GeV/ c and K − p → K − ω p at 10 and 16 GeV/ c . In the π + ω case apeak is observed at 1.23 GeV (the B meson), while the K − ω mass distribution has a threshold enhancement. The cross section of the low mass (<2.0 GeV) π + ω system falls as p lab −2 , while that of the low mass (<2.0 GeV) K − ω system is almost constant with energy, indicating diffractive production of the K − ω system, but not of the πω system. Using a modified version of the Illinois partial-wave analysis program, it is found that the K − ω system is dominantly produced in the J P = 1 + state with small contributions of 0 − and 2 + , mainly by natural parity exchange - as is found for reactions such as K − p → (K − π + π − )p which are predominantly diffractive. For the π + ω system in the B mass region, J P = 1 + states, produced mainly by natural parity exchange are found; the contributions of 0 − P, 1 − P, 2 − P and 2 + D are consistent with zero. The 1 + D state occurs in the π + ω case but not in the K − ω system, nor in the K ππ − system produced in the K − p → K ππ p reaction.

4 data tables

No description provided.

No description provided.

FROM BREIT-WIGNER FIT TO B EVENTS AND CORRECTED FOR UNSEEN OMEGA DECAY MODES.

More…

Neutral K, Lambda and anti-Lambda Production in K- p and K+ p Interactions at 32-GeV/c

The French-Soviet & CERN-Soviet collaborations Beilliere, P. ; Cochet, Christian ; Dumont, J J ; et al.
Nucl.Phys.B 90 (1975) 20-34, 1975.
Inspire Record 2057 DOI 10.17182/hepdata.32067

Inclusive cross sections and one-particle inclusive spectra are given for neutral K, Λ and Λ produced in K − p and K + p interactions at 32 GeV/ c in the 4.5 m Mirabelle hydrogen bubble chamber at the Serpukhov accelerator. Cross sections for associated production are also given, and the energy dependences of the cross sections and of the x distributions in the central and in the fragmentation regions are discussed.

2 data tables

No description provided.

No description provided.