Measurement of prompt D$^{0}$, $\Lambda_{c}^{+}$, and $\Sigma_{c}^{0,++}$(2455) production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 128 (2022) 012001, 2022.
Inspire Record 1868463 DOI 10.17182/hepdata.127976

The $p_{\rm T}$-differential production cross sections of prompt D$^{0}$, $\Lambda_{\rm c}^{+}$, and $\Sigma_{\rm c}^{0,++}(2455)$ charmed hadrons are measured at midrapidity ($|y| < 0.5$) in pp collisions at $\sqrt{s} = 13$ TeV. This is the first measurement of $\Sigma_{\rm c}^{0,++}$ production in hadronic collisions. Assuming the same production yield for the three $\Sigma_{\rm c}^{0,+,++}$ isospin states, the baryon-to-meson cross section ratios $\Sigma_{\rm c}^{0,+,++}/{\rm D}^{0}$ and $\Lambda_{\rm c}^{+}/{\rm D}^{0}$ are calculated in the transverse momentum ($p_{\rm T}$) intervals $2 < p_{\rm T} < 12$ GeV/$c$ and $1 < p_{\rm T} < 24$ GeV/$c$. Values significantly larger than in e$^{+}$e$^{-}$ collisions are observed, indicating for the first time that baryon enhancement in hadronic collisions also extends to the $\Sigma_{\rm c}$. The feed-down contribution to $\Lambda_{\rm c}^{+}$ production from $\Sigma_{\rm c}^{0,+,++}$ is also reported and is found to be larger than in e$^{+}$e$^{-}$ collisions. The data are compared with predictions from event generators and other phenomenological models, providing a sensitive test of the different charm-hadronisation mechanisms implemented in the models.

0 data tables match query

Version 2
K$^{0}_{\rm S}$- and (anti-)$\Lambda$-hadron correlations in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 945, 2021.
Inspire Record 1891391 DOI 10.17182/hepdata.114015

Two-particle azimuthal correlations are measured with the ALICE apparatus in pp collisions at $\sqrt{s} = 13$ TeV to explore strangeness- and multiplicity-related effects in the fragmentation of jets and the transition regime between bulk and hard production, probed with the condition that a strange meson (K$^{0}_{\rm S}$) or baryon ($\Lambda$) with transverse momentum $p_{\rm T} > 3$ GeV/c is produced. Azimuthal correlations between kaons or $\Lambda$ hyperons with other hadrons are presented at midrapidity for a broad range of the trigger ($3 < p_{\rm T}^{\rm trigg} < 20$ GeV/$c$) and associated particle $p_{\rm T}$ (1 GeV/$c$$< p_{\rm T}^{\rm assoc} < p_{\rm T}^{\rm trigg}$), for minimum-bias events and as a function of the event multiplicity. The near- and away-side peak yields are compared for the case of either K$^{0}_{\rm S}$ or $\Lambda$($\overline{\Lambda}$) being the trigger particle with that of inclusive hadrons (a sample dominated by pions). In addition, the measurements are compared with predictions from PYTHIA 8 and EPOS LHC event generators.

0 data tables match query

Multiplicity dependence of $\Upsilon$ production at forward rapidity in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Nucl.Phys.B 1011 (2025) 116786, 2025.
Inspire Record 2149692 DOI 10.17182/hepdata.156765

The measurement of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) yields as a function of the charged-particle multiplicity density, $\textrm{d}N_{\textrm{ch}}/\textrm{d}\eta$, using the ALICE experiment at the LHC, is reported in pp collisions at $\sqrt{s} =$ 13 TeV. The $\Upsilon$ meson yields are measured at forward rapidity ($2.5 < y < 4$) in the dimuon decay channel, whereas the charged-particle multiplicity is defined at central rapidity ($|\eta| < 1$). Both quantities are divided by their average value in minimum bias events to compute the self-normalized quantities. The increase of the self-normalized $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) yields is found to be compatible with a linear scaling with the self-normalized $\textrm{d}N_{\textrm{ch}}/\textrm{d}\eta$, within the uncertainties. The self-normalized yield ratios of excited-to-ground $\Upsilon$ states are compatible with unity within uncertainties. Similarly, the measured double ratio of the self-normalized $\Upsilon$(1S) to the self-normalized J/$\psi$ yields, both measured at forward rapidity, is compatible with unity for self-normalized charged-particle multiplicities beyond one. The measurements are compared with theoretical predictions incorporating initial or final state effects.

0 data tables match query

Investigating $\Lambda$ baryon production in p-Pb collisions in jets and the underlying event using angular correlations

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
Phys.Rev.C 111 (2025) 015201, 2025.
Inspire Record 2791853 DOI 10.17182/hepdata.156383

First measurements of hadron(h)$-\Lambda$ azimuthal angular correlations in p$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the Large Hadron Collider are presented. These correlations are used to separate the production of associated $\Lambda$ baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet axis (underlying event). The per-trigger associated $\Lambda$ yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle $p_{\rm T}$ and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the $\phi(1020)$ meson are also made. The final results indicate that strangeness production in the highest multiplicity p$-$Pb collisions is enhanced relative to low multiplicity collisions in both the jet-like regions and the underlying event. The production of $\Lambda$ relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event.

0 data tables match query

Version 2
Search for a massive scalar resonance decaying to a light scalar and a Higgs boson in the four b quarks final state with boosted topology

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 842 (2023) 137392, 2023.
Inspire Record 2072383 DOI 10.17182/hepdata.115995

We search for new massive scalar particles X and Y through the resonant process X $\to$ YH $\to$$\mathrm{b\bar{b}b\bar{b}}$, where H is the standard model Higgs boson. Data from CERN LHC proton-proton collisions are used, collected at a centre-of-mass energy of 13 TeV in 2016-2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is performed in mass ranges of 0.9-4 TeV for X and 60-600 GeV for Y, where both Y and H are reconstructed as Lorentz-boosted single large-area jets. The results are interpreted in the context of the next-to-minimal supersymmetric standard model and also in an extension of the standard model with two additional singlet scalar fields. The 95% confidence level upper limits for the production cross section vary between 0.1 and 150 fb depending on the X and Y masses, and represent a significant improvement over results from previous searches.

0 data tables match query

Version 2
First search for exclusive diphoton production at high mass with tagged protons in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The TOTEM & CMS collaborations Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Phys.Rev.Lett. 129 (2022) 011801, 2022.
Inspire Record 1942141 DOI 10.17182/hepdata.113659

A search for exclusive two-photon production via photon exchange in proton-proton collisions, pp $\to$ p$\gamma\gamma$p with intact protons, is presented. The data correspond to an integrated luminosity of 9.4 fb$^{-1}$ collected in 2016 using the CMS and TOTEM detectors at a center-of-mass energy of 13 TeV at the LHC. Events are selected with a diphoton invariant mass above 350 GeV and with both protons intact in the final state, to reduce backgrounds from strong interactions. The events of interest are those where the invariant mass and rapidity calculated from the momentum losses of the forward-moving protons matches the mass and rapidity of the central, two-photon system. No events are found that satisfy this condition. Interpreting this result in an effective dimension-8 extension of the standard model, the first limits are set on the two anomalous four-photon coupling parameters. If the other parameter is constrained to its standard model value, the limits at 95% CL are $\lvert\zeta_1\rvert$ $\lt$ 2.9 $\times$ 10$^{-13}$ GeV$^{-4}$ and $\lvert\zeta_2\rvert$ $\lt$ 6.0 $\times$ 10$^{-13}$ GeV$^{-4}$.

0 data tables match query

Search for exotic Higgs boson decays $H \to \mathcal{A}\mathcal{A} \to  4\gamma$ with events containing two merged diphotons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 101801, 2023.
Inspire Record 2151007 DOI 10.17182/hepdata.132767

We present the first direct search for exotic Higgs boson decays H $\to$$\mathcal{A}\mathcal{A}$, $\mathcal{A}$$\to$$\gamma\gamma$ in events with two photonlike objects. The hypothetical particle $\mathcal{A}$ is a low-mass spin-0 particle decaying promptly to a merged diphoton reconstructed as a single photonlike object. We analyze the data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 136 fb$^{-1}$. No excess above the estimated background is found. We set upper limits on the branching fraction $\mathcal{B}$(H $\to$$\mathcal{A}\mathcal{A}$$\to$ 4$\gamma$) of (0.9-3.3) $\times$ 10$^{-3}$ at 95% confidence level for masses of $\mathcal{A}$ in the range 0.1-1.2 GeV.

0 data tables match query

Version 3
Measurement of the inclusive and differential $\mathrm{t\bar{t}}\gamma$ cross sections in the dilepton channel and effective field theory interpretation in proton-proton collisions at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 091, 2022.
Inspire Record 2013377 DOI 10.17182/hepdata.113657

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions in the decay channel with two oppositely charged leptons (e$^\pm\mu^\mp$, e$^+$e$^-$, or $\mu^+\mu^-$). The measurement is performed using 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at $\sqrt{s} =$ 13 TeV during the 2016-2018 data-taking period of the CERN LHC. A fiducial phase space is defined such that photons radiated by initial-state particles, top quarks, or any of their decay products are included. An inclusive cross section of 175.2 $\pm$ 2.5 (stat) $\pm$ 6.3 (syst) fb is measured in a signal region with at least one jet coming from the hadronization of a bottom quark and exactly one photon with transverse momentum above 20 GeV. Differential cross sections are measured as functions of several kinematic observables of the photon, leptons, and jets, and compared to standard model predictions. The measurements are also interpreted in the standard model effective field theory framework, and limits are found on the relevant Wilson coefficients from these results alone and in combination with a previous CMS measurement of the $\mathrm{t\bar{t}}\gamma$ production process using the lepton+jets final state.

0 data tables match query

Search for nonresonant Higgs boson pair production in final state with two bottom quarks and two tau leptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 842 (2023) 137531, 2023.
Inspire Record 2098240 DOI 10.17182/hepdata.130957

A search for the nonresonant production of Higgs boson pairs (HH) via gluon-gluon and vector boson fusion processes in final states with two bottom quarks and two tau leptons is presented. The search uses data from proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events in which at least one tau lepton decays hadronically are considered and multiple machine learning techniques are used to identify and extract the signal. The data are found to be consistent, within uncertainties, with the standard model (SM) predictions. Upper limits on the HH production cross section are set to constrain the parameter space for anomalous Higgs boson couplings. The observed (expected) upper limit at 95% confidence level corresponds to 3.3 (5.2) times the SM prediction for the inclusive HH cross section and to 124 (154) times the SM prediction for the vector boson fusion HH cross section. At 95% confidence level, the Higgs field self-coupling is constrained to be within -1.7 and 8.7 times the SM expectation, and the coupling of two Higgs bosons to two vector bosons is constrained to be within -0.4 and 2.6 times the SM expectation.

0 data tables match query

Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 667, 2023.
Inspire Record 2098239 DOI 10.17182/hepdata.130966

Production cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson. Results are presented in the form of inclusive and differential cross sections in the simplified template cross section framework, as well as couplings of the Higgs boson to vector bosons and fermions. The data set collected by the CMS detector during 2016-2018 is used, corresponding to an integrated luminosity of 138 fb$^{-1}$. The signal strength modifier $\mu$, defined as the ratio of the observed production rate in a given decay channel to the standard model expectation, is measured to be $\mu$ = 0.95 $^{+0.10}_{-0.09}$. All results are found to be compatible with the standard model within the uncertainties.

0 data tables match query