Study of the azimuthal asymmetry of jets in neutral current deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 551 (2003) 226-240, 2003.
Inspire Record 600814 DOI 10.17182/hepdata.46545

The azimuthal distribution of jets produced in the Breit frame in high-Q**2 deep inelastic e+p scattering has been studied with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb-1. The measured azimuthal distribution shows a structure that is well described by next-to-leading-order QCD predictions over the Q**2 range considered, Q**2>125 GeV**2.

4 data tables

The normalised differential cross section as a function of azimuthal angle for inclusive jet production in the Breit frame.

The folded normalised differential cross section as a function of azimuthalangle for inclusive jet production in the Breit frame.

The folded normalised differential cross section as a function of azimuthalangle for inclusive jet production in the Breit frame.

More…

Inclusive jet cross sections in the Breit frame in neutral current deep inelastic scattering at HERA and determination of alpha(s).

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 547 (2002) 164-180, 2002.
Inspire Record 593409 DOI 10.17182/hepdata.46572

Inclusive jet differential cross sections have been measured in neutral current deep inelastic e+p scattering for boson virtualities Q**2>125 GeV**2. The data were taken using the ZEUS detector at HERA and correspond to an integrated luminosity of 38.6 pb-1. Jets were identified in the Breit frame using the longitudinally invariant K_T cluster algorithm. Measurements of differential inclusive jet cross sections are presented as functions of jet transverse energy (E_T,jet), jet pseudorapidity and Q**2, for jets with E_T,jet>8 GeV. Next-to-leading-order QCD calculations agree well with the measurements both at high Q**2 and high E_T,jet. The value of alpha_s(M_Z), determined from an analysis of dsigma/dQ**2 for Q**2>500 GeV**2, is alpha_s(M_Z) = 0.1212 +/- 0.0017 (stat.) +0.0023 / -0.0031 (syst.) +0.0028 / -0.0027 (th.).

9 data tables

Inclusive jet cross section DSIG/DQ**2 for jets of hadrons in the Breit frame.

Inclusive jet cross section DSIG/DET for jets of hadrons in the Breit frame.

Inclusive jet cross section DSIG/DETARAP for jets of hadrons in the Breit frame.

More…

Determination of alpha(s) from hadronic event shapes in e+ e- annihilation at 192-GeV <= s**(1/2) <= 208-GeV

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 536 (2002) 217-228, 2002.
Inspire Record 586115 DOI 10.17182/hepdata.49741

Results are presented from a study of the structure of high energy hadronic events recorded by the L3 detector at sqrt(s)>192 GeV. The distributions of several event shape variables are compared to resummed O(alphaS^2) QCD calculations. We determine the strong coupling constant at three average centre-of-mass energies: 194.4, 200.2 and 206.2 GeV. These measurements, combined with previous L3 measurements at lower energies, demonstrate the running of alphaS as expected in QCD and yield alphaS(mZ) = 0.1227 +- 0.0012 +- 0.0058, where the first uncertainty is experimental and the second is theoretical.

9 data tables

The measured ALPHA_S at three centre-of-mass energies from fits to the individual event shape distributions. The first error is statistcal, the first DSYS error is the experimental systematic uncertainty, and the second DSYS error is the theoryuncertainty.

Updated ALPHA_S measurements from the BT, BW and C-Parameter distributions,from earlier L3 data at lower centre-of-mass energies.. The first error is the total experimental error (stat+sys in quadrature) and the DSYS error is the theory uncertainty.

Combined ALPHA_S values from the five event shape variables. The first error is statistical, the first DSYS error is the experimental systematic uncertainity, the second DSYS error is the uncertainty from the hadronisdation models, andthethird DSYS errpr is the uncertainty due to uncalculated higher orders in the QCDpredictions.

More…

Dijet photoproduction at HERA and the structure of the photon.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 23 (2002) 615-631, 2002.
Inspire Record 568665 DOI 10.17182/hepdata.46761

The dijet cross section in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb$^{-1}$. The events were required to have a virtuality of the incoming photon, $Q^2$, of less than 1 GeV$^2$ and a photon-proton centre-of-mass energy in the range $134 < W_{\gamma p} < 277$ GeV. Each event contains at least two jets satisfying transverse-energy requirements of $E_{T}^{\rm jet1}>14$ GeV and $E_{T}^{\rm jet2}>11$ GeV and pseudorapidity requirements of $-1<\eta^{\rm jet1,2}<2.4$. The measurements are compared to next-to-leading-order QCD predictions. The data show particular sensitivity to the density of partons in the photon, allowing the validity of the current parameterisations to be tested.

24 data tables

Measured cross section as a function of COS(THETA*), where THETA* is the dijet angle in the parton-parton c.m. frame. The data are shown in two X(C=GAMMA) regions.

Measured cross section as a function of ET(JET1) for X(C=GAMMA) > 0.75 for:. -1 < ETARAP(JET1) < 0. -1 < ETARAP(JET2) < 0.

Measured cross section as a function of ET(JET1) for X(C=GAMMA) > 0.75 for:. 0 < ETARAP(JET1) < 1. -1 < ETARAP(JET2) < 0.

More…

Dijet production in neutral current deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Eur.Phys.J.C 23 (2002) 13-27, 2002.
Inspire Record 563003 DOI 10.17182/hepdata.46710

Dijet cross sections in neutral current deep inelastic ep scattering have been measured in the range $10 < \Q2 < 10^4$ GeV$^2$ with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb$^{-1}$. The cross sections, measured in the Breit frame using the $\kt$ jet algorithm, are compared with next-to-leading-order perturbative QCD calculations using proton parton distribution functions. The uncertainties of the QCD calculations have been studied. The predictions are in reasonable agreement with the measured cross sections over the entire kinematic range.

13 data tables

Dijet cross section as a function of LOG10(Q**2).

Dijet cross section as a function of LOG10(MEAN(ET)**2/Q**2).

Dijet cross section as a function of LOG10(XI) for the ful Q**2 range.

More…

Measurement of dijet production in neutral current deep inelastic scattering at high Q**2 and determination of alpha(s).

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 507 (2001) 70-88, 2001.
Inspire Record 553352 DOI 10.17182/hepdata.46870

Dijet production has been studied in neutral current deep inelastic e+p scattering for 470 < Q**2 < 20000 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb**{-1}. Dijet differential cross sections are presented in a kinematic region where both theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD calculations describe the measured differential cross sections well. A QCD analysis of the measured dijet fraction as a function of Q**2 allows both a precise determination of alpha_s(M_Z) and a test of the energy-scale dependence of the strong coupling constant. A detailed analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections arising from the parton distribution functions of the proton. The value of alpha_s(M_Z), as determined from the QCD fit, is alpha_s(M_Z) = 0.1166 +- 0.0019 (stat.) {+ 0.0024}_{-0.0033} (exp.)} {+ 0.0057}_{- 0.0044} (th.).

13 data tables

The differential dijet cross section dsig/dZP1.

The differential dijet cross section dsig/dlog10(x).

The differential dijet cross section dsig/dlog10(xi).

More…

Measurement of open beauty production in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 18 (2001) 625-637, 2001.
Inspire Record 537299 DOI 10.17182/hepdata.46847

The production and semi-leptonic decay of heavy quarks have been studied in the photoproduction process $e^+p -> e^+ + {dijet} + e^- + X with the ZEUS detector at HERA using an integrated luminosity of 38.5 ${\rm pb^{-1}}$. Events with photon-proton centre-of-mass energies, $W_{\gamma p}$, between 134 and 269 GeV and a photon virtuality, Q^2, less than 1 ${\rm GeV^2}$ were selected requiring at least two jets of transverse energy $E_T^{\rm jet1(2)} >7(6)$ GeV and an electron in the final state. The electrons were identified by employing the ionisation energy loss measurement. The contribution of beauty quarks was determined using the transverse momentum of the electron relative to the axis of the closest jet, $p_T^{\rm rel}$. The data, after background subtraction, were fit with a Monte Carlo simulation including beauty and charm decays. The measured beauty cross section was extrapolated to the parton level with the b quark restricted to the region of transverse momentum $p_T^{b} > p_T^{\rm min} =$ 5 GeV and pseudorapidity $|\eta^{b}| <$ 2. The extrapolated cross section is $1.6 \pm 0.4 (stat.)^{+0.3}_{-0.5} (syst.) ^{+0.2}_{-0.4} (ext.) {nb}$. The result is compared to a perturbative QCD calculation performed to next-to-leading order.

4 data tables

The differential distribution of PT(C=REL) for heavy quark decays. The second DSYS error is due to the energy scale uncertainty.

The differential distribution of X(C=GAMMA,OBS), the fraction of the photons momentum contributing to the production of the two highest transverse energy jets. The second DSYS error is due to the energy scale uncertainty.

Cross section for beauty production with a prompt electron in the restricted kinetic region.

More…

Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Nucl.Phys.B 596 (2001) 3-29, 2001.
Inspire Record 534829 DOI 10.17182/hepdata.46889

Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e^+ + p --> e^+ + n + jet + jet + X_r have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb^{-1}. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E^{jet}_T > 6 GeV, neutron energy E_n > 400 GeV, and neutron production angle theta_n < 0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.

5 data tables

The differential dijet cross section as a function of ET for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ET for the neutron-tagged data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ETARAP for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeterenergy scale.

More…

QCD studies in e+ e- annihilation from 30-GeV to 189-GeV

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 489 (2000) 65-80, 2000.
Inspire Record 527988 DOI 10.17182/hepdata.21126

We present results obtained from a study of the structure of hadronic events recorded by the L3 detector at various centre-of-mass energies. The distributions of event shape variables and the energy dependence of their mean values are measured from 30GeV to 189GeV and compared with various QCD models. The energy dependence of the moments of event shape variables is used to test a power law ansatz for the non-perturbative component. We obtain a universal value of the non-perturbative parameter alpha_0 = 0.537 +/- 0.073. From a comparison with resummed O(alpha_s^2) QCD calculations, we determine the strong coupling constant at each of the selected energies. The measurements demonstrate the running of alpha_s as expected in QCD with a value of alpha_s(m_Z) = 0.1215 +/- 0.0012 (exp) +/- 0.0061 (th).

22 data tables

Distribution for THRUST at c.m. energy 189 GeV.

Distribution for Heavy Jet Mass at c.m. energy 189 GeV.

Distribution for Total Jet Broadening at c.m. energy 189 GeV.

More…

The Q**2 dependence of dijet cross sections in gamma p interactions at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 479 (2000) 37-52, 2000.
Inspire Record 523610 DOI 10.17182/hepdata.46968

The dependence of the photon structure on the photon virtuality, Q^2, is studied by measuring the reaction e^+p\to e^+ + {\rm jet} + {\rm jet} + {\rm X} at photon-proton centre-of-mass energies 134 < W < 223 GeV. Events have been selected in the Q^2 ranges \approx 0 GeV^2, 0.1-0.55 GeV^2, and 1.5-4.5 GeV^2, having two jets with transverse energy E_T^{jet} > 5.5 GeV in the final state. The dijet cross section has been measured as a function of the fractional momentum of the photon participating in the hard process, x_gamma. The ratio of the dijet cross section with x_gamma < 0.75 to that with x_gamma > 0.75 decreases as Q^2 increases. The data are compared with the predictions of NLO pQCD and leading-order Monte Carlo programs using various parton distribution functions of the photon. The measurements can be interpreted in terms of a resolved photon component that falls with Q^2 but remains present at values of Q^2 up to 4.5 GeV^2. However, none of the models considered gives a good description of the data.

4 data tables

Dijet cross section for the low ET set of cuts.

Dijet cross section for the high ET set of cuts.

Ratio of Dijet cross sections as a function of Q**2 for XOBS(C=GAMMA) less than to greater than 0.75 for the lower ET cuts.

More…