Tuning and test of fragmentation models based on identified particles and precision event shape data.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1996) 11-60, 1996.
Inspire Record 424112 DOI 10.17182/hepdata.47800

Event shape and charged particle inclusive distributions are measured using 750000 decays of the Z to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET, ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.

0 data tables match query

Measurement of Delta++ (1232) production in hadronic Z decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 361 (1995) 207-220, 1995.
Inspire Record 399737 DOI 10.17182/hepdata.48095

A measurement of the Δ ++ (1232) inclusive production in hadronic decays of the Z at LEP is presented, based on 1.3 million hadronic events collected by the DELPHI detector in the 1994 LEP running period. The DELPHI ring imaging Cherenkov counters are used for identifying hadrons. The average Δ ++ (1232) multiplicity per hadronic event is 0.079 ± 0.015 which is more than a factor of two below the JETSET, HERWIG and UCLA model predictions. It agrees with a recently proposed universal mass dependence of particle production rates in e + e − annihilations.

0 data tables match query

Measurement of inclusive pi0 production in hadronic Z0 decays

The DELPHI collaboration Adam, W. ; Adye, T. ; Agasi, E. ; et al.
Z.Phys.C 69 (1996) 561-574, 1996.
Inspire Record 401100 DOI 10.17182/hepdata.48063

An analysis is presented of inclusive π0 production in Z0 decays measured with the DELPHI detector. At low energies, π0 decays are reconstructed by using pairs of converted photons and combinations of converted photons and photons reconstructed in the barrel electromagnetic calorimeter (HPC). At high energies (up to $x_p={2cdot p≪/{sqrt s}=0.75}$) the excellent granularity of the HPC is exploited to search for two-photon substructures in single showers. The inclusive differential cross section is measured as a function of energy for qq̅ and bb̅ events. The number of π0’s per hadronic Z0 event is $N(≪^0)/Z_{had} ^0=9.2pm 0.2({⤪ stat})pm 1.0 ({⤪ syst})$ and for bb̅ events the number of π0’s is ${⤪ N}(≪^0)/{⤪ b⋏r b}=10.1pm 0.4({⤪ stat})pm 1.1 ({⤪ syst})$. The ratio of the number of π0’s in bb̅ events to hadronic Z0 events is less affected by the systematic errors and is found to be 1.09 ±0.05 ±0.01. The measured π0 cross sections are compared with the predictions of different parton shower models. For hadronic events, the peak position in the $xi_{⤪ p}={⤪ ln}(1/{⤪ x_p})$ distribution is $xi_p^{⋆ar}=3.90_{-0.14}^{+0.24}.$ The average number of π0’s from the decay of primary B hadrons is found to be N(B → π0X)/B hadron = 2.78 ± 0.15(stat) ± 0.60(syst).

0 data tables match query

Measurement of inclusive K*(892)0, Phi(1020) and K*2(1430)0 production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1996) 61-72, 1996.
Inspire Record 420528 DOI 10.17182/hepdata.47565

The inclusive production of the neutral vector mesons K*0(892) and ϕ(1020), and of the tensor meson ${⤪ K}_{2}^{⇒t 0}(1430)$, in hadronic decays of the Z has been measured by the DELPHI detector at LEP. The average production rates per hadronic Z decay have been determined to be 0.77 ± 0.08 K*0(892), 0.104 ± 0.008 ϕ(1020) and ${⤪ K}_{2}^{⇒t 0}(1430)$. The ratio of the tensor-to-vector meson production yields, $«ngle {⤪ K}_{2}^{⇒t 0}(1430)»ngle$, is smaller than the 〈f2(1270)〉/〈ρ0(770)〉 and $«ngle f_{2}^{⌕ime}(1525)»ngle$ ratios measured by DELPHI. The production rates and differential cross sections are compared with the predictions of JETSET 7.4 tuned to the DELPHI data and of HERWIG 5.8. The K*0(892) and ϕ(1020) data are compatible with model predictions, but a large disagreement is observed for the ${⤪ K}_{2}^{⇒t 0}(1430)$.

0 data tables match query

QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

0 data tables match query

Inclusive production of neutral pions in hadronic Z decays.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Z.Phys.C 74 (1997) 451-461, 1997.
Inspire Record 427131 DOI 10.17182/hepdata.47655

A measurement of the inclusive production of π0 mesons in hadronic Z decays is presented and compared to Monte Carlo model predictions. The analysis is based on approximately 2 million hadronic events recorded with the ALEPH detector at LEP at a centre-of-mass energy of ⊡s = 91.2 GeV. Neutral pions are reconstructed using photons measured in the electromagnetic calorimeter and photons from conversion pairs. The inclusive π0 momentum spectrum is measured in the range 0.025 < xp = p/pbeam < 1. In this range the number of π0 per hadronic Z is found to be 4.80 ± 0.07(stat) ± 0.31(sys). The differential inclusive π0 cross section is also measured as a function of transverse momentum with respect to the event plane (pTin and pTout).

0 data tables match query

Studies of quantum chromodynamics with the ALEPH detector

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Rept. 294 (1998) 1-165, 1998.
Inspire Record 428072 DOI 10.17182/hepdata.47582

Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.

0 data tables match query

Charged particle multiplicity distributions for fixed number of jets in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 56 (1992) 63-76, 1992.
Inspire Record 334948 DOI 10.17182/hepdata.14533

The multiplicity distributions of charged particles in full phase space and in restricted rapidity intervals for events with a fixed number of jets measured by the DELPHI detector are presented. The data are well reproduced by the Lund Parton Shower model and can also be well described by fitted negative binomial distributions. The properties of these distributions in terms of the clan model are discussed. In symmetric 3-jet events the candidate gluon jet is found not to be significantly different in average multiplicity than the mean of the other two jets, thus supporting previous results of the HRS and OPAL experiments. Similar results hold for events generated according to the LUND PS and to the HERWIG models, when the jets are defined by the JADE jet finding algorithm. The method seems to be insensitive for measuring the color charge ratio between gluons and quarks.

0 data tables match query

Charged particle multiplicity distributions in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 50 (1991) 185-194, 1991.
Inspire Record 301657 DOI 10.17182/hepdata.15028

This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is <nch>=20.71±0.04(stat)±0.77(syst) and the dispersionD=6.28±0.03(stat)±0.43(syst). The data are compared with the results at lower energies and with the predictions of phenomenological models. The Lund parton shower model describes the data reasonably well. The multiplicity distributions show approximate KNO-scaling. They also show positive forward-backward correlations that are strongest in the central region of rapidity and for particles of opposite charge.

0 data tables match query

Studies of hadronic event structure and comparisons with QCD models at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 55 (1992) 39-62, 1992.
Inspire Record 334954 DOI 10.17182/hepdata.14566

The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.

0 data tables match query