Date

D*+- Production by e+ e- Annihilation Near 34.4-GeV Center-Of-Mass Energy

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 126 (1983) 493-498, 1983.
Inspire Record 196842 DOI 10.17182/hepdata.30721

D ∗± production via e + e − →D ∗± X has been measured at an average CM energy of 34.4 GeV. The D ∗± energy spectrum is hard, with a maximum near χ = 0.6. The size of the D ∗ cross section, R D ∗ = σ( e + e − → D ∗ X ) σ μμ = 2.50 ± 0.64 ± 0.88 (assuming R D ∗0 = R D ∗+ ) indicates that a large fraction of charm quark production yields D ∗ mesons. The D ∗± angular distribution exhibits a forward—backward asymmetry, A = −0.28 ± 0.13. This is consistent with that expected in the standard theory for weak neutral currents and leads to | g A c | = 0.89 ± 0.44 for the axial vector coupling of the charm quark.

3 data tables

ASSUMES EQUAL RATES FOR CHARGED AND NEUTRAL D*'S. ONLY CHARGED ARE DETECTED.

DATA PEAKS AT X=0.6 TO 0.8.

ASYMMETRY MEASUREMENT. THETA IS THE ANGLE BETWEEN THE E- AND THE D*.


The Ratio of the Nucleon Structure Functions f2 (n) for Iron and Deuterium

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 123 (1983) 275-278, 1983.
Inspire Record 188925 DOI 10.17182/hepdata.30745

Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F 2 N ( Fe )/ F 2 N ( D ) is presented. The observed x -dependence of this ratio is in disagreement with existing theoretical predictions.

1 data table

RANGE OF Q*2 VARIES WITH X. E.G. AT X=0.05 , 9<Q2<27. AT X=0.65 , 36<Q2<170 GEV**2.


Inclusive Charged Particle Production at the CERN anti-p p Collider

The UA2 collaboration Banner, M. ; Bloch, P. ; Bonaudi, F. ; et al.
Phys.Lett.B 122 (1983) 322-328, 1983.
Inspire Record 190969 DOI 10.17182/hepdata.30782

Transverse momentum distributions of pions, kaons and protons have been measured around 90° in the UA2 detector at the SPS p p collider, at a CM energy of 540 GeV. All the cross sections have increased by more than a factor of 2 over those measured at ISR energies and exhibit a flatter behaviour with respect to transverse momentum.

1 data table

No description provided.


Observation of Jets in High Transverse Energy Events at the CERN Proton - anti-Proton Collider

The UA1 collaboration Arnison, G. ; Astbury, A. ; Aubert, Bernard ; et al.
Phys.Lett.B 123 (1983) 115-122, 1983.
Inspire Record 188735 DOI 10.17182/hepdata.30754

With a segmented total absorption calorimeter of large acceptance, we have measured the total transverse energy spectrum for pp̄ collisions at s 1 2 = 540 GeV up to ΣE T = 130 GeV in the pseudo-rapidity range | η |< 1.5. Using two different algorithms, we have looked for localized depositions of transverse energy (jets). For ΣE T > 40 GeV , the fraction of events with two jets increases with Σ E T ; this event structure is dominant for ΣE T > 100 GeV. We measure the inclusive jet cross section up to E T (jet) = 60 GeV and the two-jets mass distribution to 120 GeV/ c 2 . The measured cross sections are compatible with the predictions of hard scattering models based on QCD.

2 data tables

DATA TAKEN IN 1981 WITH GLOBAL TRANSVERSE ENERGY TRIGGER.

DATA TAKEN IN 1982 WITH LOCAL TRANSVERSE ENERGY TRIGGER.


PI+ P SCATTERING AT 65-MEV TO 140-MEV

Ritchie, B.g. ; Moore, R.s. ; Preedom, B.m. ; et al.
Phys.Lett.B 125 (1983) 128-132, 1983.
Inspire Record 194351 DOI 10.17182/hepdata.30742

Differential cross sections for π + p elastic scattering were measured for seven incident energies from 65 to 140 MeV at laboratory scattering angles between 93° and 165°. The results are compared with previous results of Bertin et al. and the phase-shift analysis of Arndt and Roper. Agreement between the phase-shift analysis and the data is good.

7 data tables

ABSOLUTE NORMALIZATION UNCERTAINTY = 2.4 PCT.

ABSOLUTE NORMALIZATION UNCERTAINTY = 2.0 PCT.

ABSOLUTE NORMALIZATION UNCERTAINTY = 1.4 PCT.

More…

MEASUREMENT OF THE DEUTERON STRUCTURE FUNCTION F2 AND A COMPARISON OF PROTON AND NEUTRON STRUCTURE

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 123 (1983) 123-126, 1983.
Inspire Record 188737 DOI 10.17182/hepdata.30753

The deuteron structure function F 2 d has been measured in 280 GeV μ + d interactions. Existing measurements of F 2 p , made with the same apparatus, are used to calculate F 2 p − F 2 n and F 2 n F 2 p . The ratio F 2 n F 2 p has a similar x dependence to that of earlier measurements at lower Q 2 .

10 data tables

No description provided.

No description provided.

No description provided.

More…

DIFFRACTIVE K0 LAMBDA0 PRODUCTION BY NEUTRONS WITH 40-GeV/c MEAN MOMENTUM

The BIS-2 collaboration Aleev, A.N. ; Arefev, V.A. ; Balandin, V.P. ; et al.
PHE 83-1, 1983.
Inspire Record 190017 DOI 10.17182/hepdata.31222

None

1 data table

No description provided.


PARTICLE PRODUCTION IN THE TARGET RAPIDITY REGION FROM HADRON NUCLEUS REACTIONS AT SEVERAL GEV

Shibata, T.A. ; Nakai, K. ; Enyo, H. ; et al.
Nucl.Phys.A 408 (1983) 525-558, 1983.
Inspire Record 197272 DOI 10.17182/hepdata.8739

Highly inelastic processes in hadron-nucleus reactions at several GeV have been studied by measuring multi-particle emission in the target-rapidity region. Events with no leading particle(s) but with high multiplicities were observed up to 4 GeV. Proton spectra from such events were well reproduced with a single-moving-source model, which implied possible formation of a local source. The number of nucleons involved in the source was estimated to be (3–5)A 1 3 from the source velocity and the multiplicity of emitted protons. In those processes the incident energy flux seemed to be deposited totally or mostly (>62;75%) in the target nucleus to form the local source. The cross sections for the process were about 30% of the geometrical cross sections, with little dependence on incident energies up to 4 GeV and no dependence on projectiles (pions or protons). The E 0 parameter in the invariant-cross-section formula E d 3 σ /d p 3 = A exp (− E / E 0 ) for protons from the source increases with incident energy from 1 to 4 GeV/ c , but seems to saturate above 10 GeV at a value E 0 = 60–70 MeV. Three components in the emitted nucleon spectra were observed which would correspond to three stages of the reaction process: primary, pre-equilibrium and equilibrium.

72 data tables

BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.

BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.

BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.

More…

LEADING PARTICLES, ASSOCIATIVE MULTIPLICITIES AND PARTIAL INELASTIC FACTORS IN PI- N AND PI- C INTERACTIONS AT 40-GEV/C. (IN RUSSIAN)

Azimov, S.a. ; Allaberdin, M.l. ; Gulamov, K.g. ; et al.
Yad.Fiz. 37 (1983) 636-640, 1983.
Inspire Record 194255 DOI 10.17182/hepdata.2632

None

5 data tables

No description provided.

No description provided.

No description provided.

More…

Inclusive $\Delta^{++}$ and $\Lambda$ Production in Proton Proton Interactions at {ISR} Energies

Drijard, D. ; Fabbri, F. ; Fischer, H.G. ; et al.
Z.Phys.C 21 (1984) 321, 1984.
Inspire Record 188801 DOI 10.17182/hepdata.16280

Inclusive cross sections forΔ++ production inpp interactions at different ISR energies are presented. The differential cross sectiondσ/dx forΔ++ production is found to be approximately independent of Feynmanx. No strong energy dependence is seen over the ISR energy range. The topological cross sections ofΔ++ at\(\sqrt s= 62\) GeV show an appreciable contribution from non-diffractive production mechanisms. An upper limit for theΔ0 production cross section is determined.

3 data tables

No description provided.

No description provided.

No description provided.