Multistep production of eta and hard pi0 mesons in subthreshold Au Au collisions.

Wolf, A.R. ; Appenheimer, M. ; Averbeck, R. ; et al.
Phys.Rev.Lett. 80 (1998) 5281-5284, 1998.
Inspire Record 471975 DOI 10.17182/hepdata.41989

The neutral π0 and η mesons are studied in 197Au−197Au collisions at an incident energy of 800AMeV, substantially below the threshold for η production in N−N collisions. While the gross π0 multiplicity increases almost linearly with the number of participant nucleons, the multiplicities of η and hard π0 mesons show a stronger than linear dependence. The nonlinearity is governed by the average transverse-mass excess 〈mt〉−(s−2mN) of the mesons and is insensitive to their final-state interaction in the nuclear medium.

0 data tables match query

Mass dependence of pi0 production in heavy ion collisions at 1-A/GeV

Schwalb, O. ; Pfeiffer, M. ; Berg, F.-D. ; et al.
Phys.Lett.B 321 (1994) 20-25, 1994.
Inspire Record 376130 DOI 10.17182/hepdata.28781

The production of neutral pions has been studied in the reactions 40 Ar + nat Ca , 86 Kr + nat Zr and 197 Au + 197 Au at 1 A GeV. For high energy pions emitted from the heavier systems a steeper than linear rise of the pion multiplicity with the centrality of the reaction is observed, indicating a pion production process other than binary nucleon-nucleon collisions. At low transverse momenta an enhancement of the π 0 -multiplicity increasing with the mass of the collision system is found. Systematic discrepancies between the experimental results and recent BUU, QMD and Cascade calculations are discussed.

0 data tables match query

Pion reabsorption in heavy ion collisions interpreted in terms of the Delta capture process

Holzmann, R. ; Schubert, A. ; Hlavac, S. ; et al.
Phys.Lett.B 366 (1996) 63-68, 1996.
Inspire Record 402497 DOI 10.17182/hepdata.41988

We have measured energy-differential cross sections for π 0 production in 36 Ar+ 197 Au collisions at 95 MeV/u. From an analysis of spectral features due to pion final-state interactions we have estimated the cross section of the capture process Δ + N → N + N in the center-of-mass energy range s ≃2.05−2.25 GeV . Within the frame of BUU calculations, our results support the extension of the detailed-balance principle to broad-width resonances.

0 data tables match query