We have studied K+π− elastic scattering in the reaction K+p→K+π−Δ++ at 12 GeVc and in the Kπ mass interval 800 to 1000 MeV. We have performed a partial-wave analysis in this Kπ mass region, dominated by the p-wave resonance K*(890), in order to obtain information about the s-wave amplitude. We have extrapolated the K+π− moments, the total cross section, and p-wave cross section to the pion pole. The p-wave cross section is close to the unitarity limit and can be described by a Breit-Wigner resonance form, with parameters M=896±2 MeV and Γ=47±3 MeV. We then perform an energy-independent phase-shift analysis of the extrapolated moments and total cross section using this Breit-Wigner form for the p wave and a previously determined small negative phase shift for the I=32s wave. For the I=12s-wave phase shift we find the so called "down" solution, which has a phase shift that rises slowly from 20° at M(Kπ)=800 MeV to 60° at M(Kπ)=1000 MeV. The energy dependence of this phase shift is well described by an effective range form, with a scattering length a01=−0.33±0.05 F. The so-called "up" solution is eliminated or has large χ2 everywhere except for two overlapping mass intervals at M(Kπ)=890 and 900 MeV. However, due to limited statistics, we expect two solutions for the s wave very near the mass where the p wave is resonant. We then perform an energy-dependent partial-wave analysis and find again no evidence for an s-wave resonance although, due to limited statistics, we could not exclude one at 890 MeV with Γ<7 MeV.
Extrapolation.
Extrapolation. Initial K+ PI- system in P-wave state.
We have done a JP analysis of the low-mass π+ω system, using the reaction π+p→π+ωp at 7.1 GeV/c. We find that the B resonance cannot be JP=0− and must belong to the unnatural-parity series (1+, 2−, 3+,...), regardless of the amount of interference between the B and the background. If we assume that the B does not interfere with the background, we find that all JP states for the resonance are rejected except for 1+. Even if interference effects are allowed in the analysis, a good fit with reasonable parameters is obtained only with the 1+ hypothesis for the B meson. In an appendix, we give relevant theoretical formulas appropriate for a πω system with any number of spin-parity states and arbitrary degrees of interference among them.
TAKING INTO ACCOUNT 0- AND 1+ SMOOTH BACKGROUND UNDER THE B MESON. EVENTS WITH 1.08 < M(PI+ OMEGA) < 1.38 GEV.
We have measured the inclusive cross sections for γ, Ks0, Λ, and Λ¯ production in π+p and pp interactions at 100 GeV/c and compared various inclusive distributions of the produced γ and Ks0.
No description provided.
No description provided.
No description provided.
The differential cross section of π+p elastic scattering has been measured in two high-statistics bubble-chamber exposures at laboratory beam momenta of 3.7 and 7.1 GeV/c. A new feature suggested by these data is a dip in dσdu at −u≃3 GeV2. This dip corresponds well to the third zero of J0(b−u′), where ℏcb=1 fm. The effective u-channel Regge trajectory computed for these two energies has a slope of 0.22 ± 0.26.
No description provided.
Strong evidence is presented for quasi-two-body production of a π + p enhancement with mass 1881±6MeV and width 219±23MeV, recoiling off vector mesons ϱ O and ω from π + p interactions at 7.1 GeV/ c and K * o (890) from K + p interactions at 12 GeV/ c . The most probable J P assignment for this object is 7/2 + , making it a likely candidate for the Regge recurrence of Δ(1236).
JACKSON FRAME.
JACKSON FRAME.
Inclusive Δ++(1236) production in π+p and pp interactions is consistent with one-pion exchange. The average charged multiplicity recoiling from the Δ++ is studied as a function of missing mass, M2, for both interactions.
No description provided.
No description provided.
No definite evidence for structure is found in the p¯p→n¯n cross section between 276 and 963 MeV/c. From these results limits are deduced on properties of the narrow enhancement reported in the p¯p total cross section at 475 MeV/c.
No description provided.
An analysis has been made of 64 600 events of the type K−p→K−p and 22 800 events of the type K−p→K¯0n in the Berkeley 25-in. hydrogen bubble chamber. Differential cross sections have been measured in intervals of 10 MeV/c over the momentum range 220 to 470 MeV/c. Legendre-polynomial fits to the distributions have been made, and the coefficients show structure from the resonant D-wave [Λ(1520)] and background S and P waves. No new structure is observed. The total K−p cross section determined from measurements of all final states seen in this exposure is also presented.
No description provided.
No description provided.
No description provided.
We report the results of a precise measurement of the K−p→K¯∘n cross section between 515 and 1065 MeV/c in steps of 10 MeV/c. The statistical errors are less than 1%, a major improvement in accuracy over previous work. No evidence is found for the new I=1 K¯N resonances at 546 and 602 MeV/c reported recently by Carroll et al.
No description provided.
The differential cross section for the charge-exchange reaction K−p→K¯0n has been measured at 22 incident momenta between 515 and 956 MeV/c. Experimental results and Legendre-polynomial fits to the data are presented.
No description provided.
No description provided.
No description provided.