The production cross sections of the prompt charmed mesons ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$ and ${\rm D_s^+}$ were measured at mid-rapidity in proton-proton collisions at a centre-of-mass energy $\sqrt{s}=7$ TeV with the ALICE detector at the Large Hadron Collider (LHC). D mesons were reconstructed from their decays ${\rm D}^0 \to {\rm K}^-\pi^+$, ${\rm D}^+\to {\rm K}^-\pi^+\pi^+$, ${\rm D}^{*+} \to {\rm D}^0 \pi^+$, ${\rm D_s^{+}\to \phi\pi^+\to K^-K^+\pi^+}$, and their charge conjugates. With respect to previous measurements in the same rapidity region, the coverage in transverse momentum ($p_{\rm T}$) is extended and the uncertainties are reduced by a factor of about two. The accuracy on the estimated total $\rm c\overline c$ production cross section is likewise improved. The measured $p_{\rm T}$-differential cross sections are compared with the results of three perturbative QCD calculations.
$p_{\rm T}$-differential cross section of prompt $\rm{D}^{0}$ mesons in pp collisions at $\sqrt{s_{\rm{NN}}}$=7 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm{D}^{0}\rightarrow K\pi$ : 0.0393.
$p_{\rm T}$-differential cross section of prompt $\rm{D^{+}}$ mesons in pp collisions at $\sqrt{s_{\rm{NN}}}$=7 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm D^{+-}\rightarrow K{\rm{\pi}}{\rm{\pi}}$ : 0.0946.
$p_{\rm T}$-differential cross section of prompt $\rm D^{*}$ mesons in pp collisions at $\sqrt{s_{\rm{NN}}}$=7 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm{D}^{*+}\rightarrow \rm{D}^{0}\pi\rightarrow K\pi\pi$ : 0.0266.
We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5<y<4$) as well as $\psi(2S)$-to-J/$\psi$ cross section ratios. These quantities are measured in pp collisions at center of mass energies $\sqrt{s}=5.02$ and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at $\sqrt{s}=2.76$, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full $p_{\rm T}$ range, provided that both contributions are summed. In particular, it is found that for $p_{\rm T}>15$ GeV/$c$ the non-prompt contribution reaches up to 50% of the total charmonium yield.
Differential production cross sections of $J/\psi$ as a function of $p_{\rm T}$.
Differential production cross sections of $J/\psi$ as a function of rapidity.
Differential production cross sections of $\psi(2S)$ as a function of $p_{\rm T}$.
This letter presents the first measurement of jet mass in Pb-Pb and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV and 5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at collider energies. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm and resolution parameter $R = 0.4$. The jets are measured in the pseudorapidity range $|\eta_{\rm{jet}}|<0.5$ and in three intervals of transverse momentum between 60 GeV/$c$ and 120 GeV/$c$. The measurement of the jet mass in central Pb-Pb collisions is compared to the jet mass as measured in p-Pb reference collisions, to vacuum event generators, and to models including jet quenching. It is observed that the jet mass in central Pb-Pb collisions is consistent within uncertainties with p-Pb reference measurements. Furthermore, the measured jet mass in Pb-Pb collisions is not reproduced by the quenching models considered in this letter and is found to be consistent with PYTHIA expectations within systematic uncertainties.
Jet mass distribution in pPb collisions at cme 5020 GeV, pT,jet ch = 60-80 GeV/c
Jet mass distribution in pPb collisions at cme 5020 GeV, pT,jet ch = 80-100 GeV/c
Jet mass distribution in pPb collisions at cme 5020 GeV, pT,jet ch = 100-120 GeV/c
The production of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at $\sqrt{s_\mathrm{NN}} =$ 2.76 TeV has been analyzed using a high luminosity data sample accumulated in 2011 with the ALICE detector at the Large Hadron Collider (LHC). Transverse momentum ($p_{\mathrm{T}}$) spectra have been measured for K$^{*}(892)^{0}$ and $\phi(1020)$ mesons via their hadronic decay channels for $p_{\mathrm{T}}$ up to 20 GeV/$c$. The measurements in pp collisions have been compared to model calculations and used to determine the nuclear modification factor and particle ratios. The K$^{*}(892)^{0}$/K ratio exhibits significant reduction from pp to central Pb-Pb collisions, consistent with the suppression of the K$^{*}(892)^{0}$ yield at low $p_{\mathrm{T}}$ due to rescattering of its decay products in the hadronic phase. In central Pb-Pb collisions the $p_{\mathrm{T}}$ dependent $\phi(1020)/\pi$ and K$^{*}(892)^{0}$/$\pi$ ratios show an enhancement over pp collisions for $p_{\mathrm{T}}$ $\sim$3 GeV/$c$, consistent with previous observations of strong radial flow. At high $p_{\mathrm{T}}$, particle ratios in Pb-Pb collisions are similar to those measured in pp collisions. In central Pb-Pb collisions, the production of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons is suppressed for $p_{\mathrm{T}}> 8$ GeV/$c$. This suppression is similar to that of charged pions, kaons and protons, indicating that the suppression does not depend on particle mass or flavor in the light quark sector.
Invariant yield of K$^{*0}$ meson normalized to the number of inelastic pp collisions at $\sqrt{s}=2.76~{\rm TeV}$.
Invariant yield of $\phi$ meson normalized to the number of inelastic pp collisions at $\sqrt{s}=2.76~{\rm TeV}$.
Invariant yield of K$^{*0}$ meson for 0-5$\%$ centrality in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$.
The differential cross section for inclusive particle production as a function of energy in proton-proton collisions at a center-of-mass energy of 13 TeV is measured in the very forward region of the CMS detector. The measurement is based on data collected with the CMS apparatus at the LHC, and corresponds to an integrated luminosity of 0.35 inverse microbarns. The energy is measured in the CASTOR calorimeter, which covers the pseudorapidity region -6.6 < eta < -5.2. The results are given as a function of the total energy deposited in CASTOR, as well as of its electromagnetic and hadronic components. The spectra are sensitive to the modeling of multiparton interactions in pp collisions, and provide new constraints for hadronic interaction models used in collider and in high energy cosmic ray physics.
Differential cross section as a function of the electromagnetic energy in the region −6.6 < eta < −5.2 for events with xi>10−6.
Differential cross section as a function of the total energy in the region −6.6 < eta < −5.2 for events with xi>10−6.
Differential cross section as a function of the hadronic energy in the region −6.6 < eta < −5.2 for events with xi>10−6.
We report measurements of the photon beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\to p\pi^0$ and $\vec{\gamma}p\to p\eta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $\pi^0$ measurements and are the first $\eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.
Measurement of the beam asymmetry $\Sigma$ for $\pi^0$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.
Measurement of the beam asymmetry $\Sigma$ for $\eta$ photoproduction on the proton at $E_\gamma = 9$ GeV. The uncorrelated systematic errors (syst) are given in the table below along with a correlated normalization uncertainty (norm) of 3.6% due to the beam polarization.
The transverse momentum distributions of the strange and double-strange hyperon resonances ($\Sigma(1385)^{\pm}$, $\Xi(1530)^{0}$) produced in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV were measured in the rapidity range $-0.5< y_{\rm{CMS}}<0$ for event classes corresponding to different charged-particle multiplicity densities, $\langle{\rm d}N_{\rm{ch}}/{\rm d}\eta_{\rm{lab}}\rangle$. The mean transverse momentum values are presented as a function of $\langle{\rm d}N_{\rm{ch}}/{\rm d}\eta_{\rm{lab}}\rangle$, as well as a function of the particle masses and compared with previous results on hyperon production. The integrated yield ratios of excited to ground-state hyperons are constant as a function of $\langle{\rm d}N_{\rm{ch}}/{\rm d}\eta_{\rm{lab}}\rangle$. The equivalent ratios to pions exhibit an increase with $\langle{\rm d}N_{\rm{ch}}/{\rm d}\eta_{\rm{lab}}\rangle$, depending on their strangeness content.
Average charged particle pseudo-rapidity density, $\langle\rm{d}N_{\rm{ch}}/\rm{d}\eta_{\rm{lab}}\rangle$, measured at mid-rapidity in visible cross section event classes. Multiplicity classes are defined using the V0A estimator; values for $\langle\rm{d}N_{\rm{ch}}/\rm{d}\eta_{\rm{lab}}\rangle$ are corrected for vertexing and trigger efficiency. Since statistical uncertainties are negligible, only total systematic uncertainties are reported.
Average charged particle pseudo-rapidity density, $\langle\rm{d}N_{\rm{ch}}/\rm{d}\eta_{\rm{lab}}\rangle$, measured at mid-rapidity in visible cross section event classes. Multiplicity classes are defined using the V0A estimator; values for $\langle\rm{d}N_{\rm{ch}}/\rm{d}\eta_{\rm{lab}}\rangle$ are corrected for vertexing and trigger efficiency. Since statistical uncertainties are negligible, only total systematic uncertainties are reported.
$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ in p-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (NSD).
We present measurements of bulk properties of the matter produced in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, and 39 GeV using identified hadrons ($\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity ($|y|<$0.1) results for multiplicity densities $dN/dy$, average transverse momenta $\langle p_T \rangle$ and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.
The average number of participating nucleons (⟨Npart⟩) for various collision centralities in Au+Au collisions at √sNN = 7.7–39 GeV.
Midrapidity (|y| < 0.1) transverse momentum spectra for (b) π- in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
Midrapidity (|y| < 0.1) transverse momentum spectra for (a) π+ in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.
The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$\hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $\Lambda$ and $\overline{\Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the "perfect fluid" created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.
Lambda and AntiLambda polarization as a function of collision energy. A 0.8% error on the alpha value used in the paper is corrected in this table. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.
Lambda and AntiLambda polarization as a function of collision energy calculated using the new $\alpha_\Lambda=0.732$ updated on PDG2020. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.
We present three-particle mixed-harmonic correlations $\la \cos (m\phi_a + n\phi_b - (m+n) \phi_c)\ra$ for harmonics $m,n=1-3$ for charged particles in $\sqrt{s_{NN}}=$200 GeV Au+Au collisions at RHIC. These measurements provide information on the three-dimensional structure of the initial collision zone and are important for constraining models of a subsequent low-viscosity quark-gluon plasma expansion phase. We investigate correlations between the first, second and third harmonics predicted as a consequence of fluctuations in the initial state. The dependence of the correlations on the pseudorapidity separation between particles show hints of a breaking of longitudinal invariance. We compare our results to a number of state-of-the art hydrodynamic calculations with different initial states and temperature dependent viscosities. These measurements provide important steps towards constraining the temperature dependent transport and the longitudinal structure of the initial state at RHIC.
Dependence of mixed harmonic correlators $C_{1,2,3}$ and $C_{2,2,4}$ on relative pseudorapidity.
Centrality dependence of mixed harmonic correlators $C_{m,n,m+n}$.