A search for charmonium and other new states is performed in a study of exclusive initial-state-radiation production of D Dbar events from electron-positron annihilations at a center-of-mass energy of 10.58 GeV. The data sample corresponds to an integrated luminosity of 384 fb-1 and was recorded by the BABAR experiment at the PEP-II storage ring. The D Dbar mass spectrum shows clear evidence of the psi(3770) plus other structures near 3.9, 4.1, and 4.4 GeV/c^2. No evidence for Y(4260) -> D Dbar is observed, leading to an upper limit of B(Y(4260) -> D Dbar)/B(Y(4260) -> J/psi pi+ pi-) < 1.0 at 90 % confidence level.
Using the CLEO II detector at the Cornell Electron Storage Ring, we have determined the inclusive B* cross section above the Υ(4S) resonance in the energy range from 10.61 to 10.70 GeV. We also report a new measurement of the energy of the B*→Bγ transition photon of 46.2±0.3±0.8 MeV.
We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.
This paper presents measurements of the inclusive production cross sections of Λ baryons in e+e− annihilations at s=29 GeV. The data sample corresponds to an integrated luminosity of 256 pb−1 collected with the High-Resolution Spectrometer at the SLAC storage ring PEP. Comparisons are made to the predictions of the Lund model. The data are well described with use of a strange-diquark suppression parameter, (usud)(sd), of 0.89 ± 0.10−0.16+0.56, and the measured Λc→Λ+X branching ratio of (23 ± 10)%.
We have observed decays of the ϒ(1S) into hadronic final states containing high-energy photons. These are interpreted as coming from the decay ϒ(1S)→γ+gluon+gluon. We compare the shape of the observed photon energy spectrum with several theoretical predictions and deduce the value of the strong-coupling constant αs and the QCD scale parameter ΛMS― (MS― denotes the modified minimal-subtraction scheme) associated with each prediction.
The branching fraction for the decay of the ϒ(1S) into τ paris has been measured to be (3.4±0.4±0.4)%. This result agrees with the previously measured branching ratio of the decay into muon pairs.
We have measured the inclusive branching ratio for B→φX to be 0.023±0.006±0.005. The momentum distribution of the φ mesons is compared with that expected from the cascade decays B→F→φ and B→D→φ. .AE
The production of the tensor mesons f0(1270) and K*0(1430) and the scalar meson S(975) has been observed in e+e− annihilation at 29 GeV center-of-mass energy by use of data obtained with the high-resolution spectrometer at the SLAC e+e− storage ring PEP. The mean multiplicities for meson momenta greater than 1450 MeV/c are 〈nf0〉=0.11±0.04, 〈nK*0(1430)〉=0.10±0.06, and 〈nS〉=0.05±0.02 per hadronic event. The fragmentation functions of the tensor mesons are in good agreement with the predictions of the Webber cluster model. The data are consistent with a predominant strange-quark content on the S meson.
Data from the high-resolution spectrometer at PEP have been used to study the inclusive production of φ mesons and F± mesons decaying into φπ±. Fragmentation functions and cross sections are presented and compared to existing data. The total φ cross section at 29 GeV is 40±6 pb. The observed F signal in the region z>0.4, given the assumption that R(F)[R(F)+R(D)]=0.15, corresponds to an F→φπ branching ratio of (3.3±1.1)%. The measured F mass is 1963±3±3 MeV/c2.
Using the CLEO detector at the Cornell Electron Storage Ring, the authors have measured the leptonic branching fractions, Bμμ, of the ϒ(1S), ϒ(2S), and ϒ(3S) to be 2.7±0.3±0.3%, 1.9±1.3±0.5%, and 3.3±1.3±0.7%, respectively. Combining these values of Bμμ with previous measurements of the leptonic widths of these resonances, the authors find the total widths of the ϒ(1S), ϒ(2S), and ϒ(3S) to be 48±4±4, 27±17±6, and 13±4±3 keV.