Date

Search for resonant leptoquark production via lepton-jet signatures in $pp$ collisions at $\sqrt{s} = 13$ TeV and $\sqrt{s} = 13.6$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2025) 180, 2025.
Inspire Record 2943627 DOI 10.17182/hepdata.166328

This paper presents a search for physics beyond the Standard Model targeting a heavy resonance visible in the invariant mass of the lepton-jet system. The analysis focuses on final states with a high-energy lepton and jet, and is optimised for the resonant production of leptoquarks-a novel production mode mediated by the lepton content of the proton originating from quantum fluctuations. Four distinct and orthogonal final states are considered: $e$+light jet, $μ$+light jet, $e$+$b$-jet, and $μ$+$b$-jet, constituting the first search at the Large Hadron Collider for resonantly produced leptoquarks with couplings to electrons and muons. Events with an additional same-flavour lepton, as expected from higher-order diagrams in the signal process, are also included in each channel. The search uses proton-proton collision data from the full Run 2, corresponding to an integrated luminosity of 140 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, and from a part of Run 3 (2022-2023), corresponding to 55 fb$^{-1}$ at $\sqrt{s} = 13.6$ TeV. No significant excess over Standard Model predictions is observed. The results are interpreted as exclusion limits on scalar leptoquark ($\tilde{S}_1$) production, substantially improving upon previous ATLAS constraints from leptoquark pair production for large coupling values. The excluded $\tilde{S}_1$ mass ranges depend on the coupling strength, reaching up to 3.4 TeV for quark-lepton couplings $y_{de} = 1.0$, and up to 4.3 TeV, 3.1 TeV, and 2.8 TeV for $y_{sμ}$, $y_{be}$, and $y_{bμ}$ couplings set to 3.5, respectively.

64 data tables

Data (dots) and post-fit SM distribution (histograms) of m<sub>&#8467;j</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run&nbsp;2 and Run&nbsp;3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (2.0&nbsp;TeV, 1.0) and S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (3.0&nbsp;TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin

Data (dots) and post-fit SM distribution (histograms) of m<sub>&#8467;j</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run&nbsp;2 and Run&nbsp;3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (2.0&nbsp;TeV, 1.0) and S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (3.0&nbsp;TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin

Data (dots) and post-fit SM distribution (histograms) of m<sub>&#8467;j</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run&nbsp;2 and Run&nbsp;3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (2.0&nbsp;TeV, 1.0) and S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (3.0&nbsp;TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin

More…

Measurement of the top-quark pole mass in dileptonic $t\bar{t}+ 1\text{-jet}$ events at $\sqrt{s}=13$ TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2025) 023, 2025.
Inspire Record 2942410 DOI 10.17182/hepdata.159628

A measurement of the top-quark pole mass $m_{t}^\text{pole}$ is presented in $t\bar{t}$ events with an additional jet, $t\bar{t}+1\text{-jet}$, produced in $pp$ collisions at $\sqrt{s}=13$ TeV. The data sample, recorded with the ATLAS experiment during Run 2 of the LHC, corresponds to an integrated luminosity of $140~\text{fb}^{-1}$. Events with one electron and one muon of opposite electric charge in the final state are selected to measure the $t\bar{t}+1\text{-jet}$ differential cross-section as a function of the inverse of the invariant mass of the $t\bar{t}+1\text{-jet}$ system. Iterative Bayesian Unfolding is used to correct the data to enable comparison with fixed-order calculations at next-to-leading-order accuracy in the strong coupling. The process $pp \to t\bar{t}j$ ($2 \rightarrow 3$), where top quarks are taken as stable particles, and the process $pp \to b\bar{b}l^+νl^- \barν j$ ($2 \to 7$), which includes top-quark decays to the dilepton final state and off-shell effects, are considered. The top-quark mass is extracted using a $χ^2$ fit of the unfolded normalized differential cross-section distribution. The results obtained with the $2 \to 3$ and $2 \to 7$ calculations are compatible within theoretical uncertainties, providing an important consistency check. The more precise determination is obtained for the $2 \to 3 $ measurement: $m_{t}^\text{pole}=170.7\pm0.3~(\text{stat.})\pm1.4~(\text{syst.})~\pm 0.3~(\text{scale})~\pm 0.2~(\text{PDF}\oplusα_\text{S})~\text{GeV},$ which is in good agreement with other top-quark mass results.

16 data tables

Unfolded number of events in the 2-to-3measurement (not normalized). The parton level is defined with two stable top-quarks and a jet with $p_{T}>50$ GeV and $|\eta|<2.5$.

Covariance matrix for statistical effects of the measured number of events after unfolding, for the 2-to-3 measurement (not normalized)

Covariance matrix for statistical and systematic effects of the measured number of events after unfolding, for the 2-to-3 measurement (not normalized)

More…

Search for single production of vector-like quarks decaying into $W(\ellν)b$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2025) 012, 2025.
Inspire Record 2936806 DOI 10.17182/hepdata.161563

A search for single production of a vector-like quark $Q$, which could be either a singlet $T$, with charge $\tfrac23$, or a $Y$ from a $(T,B,Y)$ triplet, with charge $-\tfrac43$, is performed using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data correspond to the full integrated luminosity of 140 fb$^{-1}$ recorded with the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis targets $Q \to Wb$ decays where the $W$ boson decays leptonically. The data are found to be consistent with the expected Standard Model background, so upper limits are set on the cross-section times branching ratio, and on the coupling of the $Q$ to the Standard Model sector for these two benchmark models. Effects of interference with the Standard Model background are taken into account. For the singlet $T$, the 95% confidence level limit on the coupling strength $κ$ ranges between 0.22 and 0.52 for masses from 1150 to 2300 GeV. For the $(T,B,Y)$ triplet, the limits on $κ$ vary from 0.14 to 0.46 for masses from 1150 to 2600 GeV.

19 data tables

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

More…

Measurements of differential cross-sections of $WbWb$ production in the dilepton channel in $pp$ collisions at $\sqrt{s}$ = 13 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-094, 2025.
Inspire Record 2935747 DOI 10.17182/hepdata.159379

At the Large Hadron Collider, the $WbWb$ final state is expected to be dominated by $t\bar{t}$ production with a contribution from single-top processes. Differential cross-sections for $WbWb$ production in the dilepton decay channel are measured at the particle level as a function of various kinematic variables. The analysis is based on data from proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider over the period from 2015 to 2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. Measurements are performed within the fiducial phase-space defined by the presence of two $b$-jets and one electron and one muon of opposite charges. The differential cross-sections are corrected for detector effects and unfolded to the particle level. Results are compared with predictions from Monte Carlo event generators at next-to-leading order in perturbative quantum chromodynamics. These measurements provide valuable constraints on the modelling of $WbWb$ production and the interference between doubly resonant and singly resonant $WbWb$ production.

186 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Exclusive:</i> <ul> <li> NLEP = 2, EMU, PT &gt; 28 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NBJETS = 2 </ul><br/> <i>Inclusive:</i> <ul> <li> NLEP = 2, EMU, PT &gt; 28 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NBJETS &gt;= 2 </ul><br/> <b>Measurements:</b><br/> <i>Exclusive:</i><br/> Spectra: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 1">Table 1</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 4">Table 4</a> ) <li>SIG (<a href="159379?table=Table 7">Table 7</a> ) </ul><br/> Data statistical covariances: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 2">Table 2</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 5">Table 5</a> ) <li>SIG (<a href="159379?table=Table 8">Table 8</a> ) </ul><br/> MC statistical covariances: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 3">Table 3</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 6">Table 6</a> ) <li>SIG (<a href="159379?table=Table 9">Table 9</a> ) </ul><br/> <b>Particle level:</b><br/> <i>Inclusive:</i><br/> Spectra: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 10">Table 10</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 13">Table 13</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 16">Table 16</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 19">Table 19</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 22">Table 22</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 25">Table 25</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 28">Table 28</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 31">Table 31</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 34">Table 34</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 37">Table 37</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 40">Table 40</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 43">Table 43</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 46">Table 46</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 49">Table 49</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 52">Table 52</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 55">Table 55</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 58">Table 58</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 61">Table 61</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 64">Table 64</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 67">Table 67</a> ) <li>SIG (<a href="159379?table=Table 70">Table 70</a> ) </ul><br/> Data statistical covariances: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 11">Table 11</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 14">Table 14</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 17">Table 17</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 20">Table 20</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 23">Table 23</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 26">Table 26</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 29">Table 29</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 32">Table 32</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 35">Table 35</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 38">Table 38</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 41">Table 41</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 44">Table 44</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 47">Table 47</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 50">Table 50</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 53">Table 53</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 56">Table 56</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 59">Table 59</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 62">Table 62</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 65">Table 65</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 68">Table 68</a> ) <li>SIG (<a href="159379?table=Table 71">Table 71</a> ) </ul><br/> MC statistical covariances: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 12">Table 12</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 15">Table 15</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 18">Table 18</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 21">Table 21</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 24">Table 24</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 27">Table 27</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 30">Table 30</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 33">Table 33</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 36">Table 36</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 39">Table 39</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 42">Table 42</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 45">Table 45</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 48">Table 48</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 51">Table 51</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 54">Table 54</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 57">Table 57</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 60">Table 60</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 63">Table 63</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 66">Table 66</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 69">Table 69</a> ) <li>SIG (<a href="159379?table=Table 72">Table 72</a> ) </ul><br/> Inter-spectra data statistical covariances: <ul> <li>SIG (exclusive) versus DSIG/DM_BL_MINIMAX (exclusive) (<a href="159379?table=Table 73">Table 73</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 74">Table 74</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 75">Table 75</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 76">Table 76</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 77">Table 77</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 78">Table 78</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 79">Table 79</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 80">Table 80</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 81">Table 81</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 82">Table 82</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 83">Table 83</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus SIG (inclusive) (<a href="159379?table=Table 84">Table 84</a> ) <li>SIG (exclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 85">Table 85</a> ) <li>SIG (exclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 86">Table 86</a> ) <li>SIG (exclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 87">Table 87</a> ) <li>SIG (exclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 88">Table 88</a> ) <li>SIG (exclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 89">Table 89</a> ) <li>SIG (exclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 90">Table 90</a> ) <li>SIG (exclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 91">Table 91</a> ) <li>SIG (exclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 92">Table 92</a> ) <li>SIG (exclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 93">Table 93</a> ) <li>SIG (exclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 94">Table 94</a> ) <li>SIG (exclusive) versus SIG (inclusive) (<a href="159379?table=Table 95">Table 95</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 96">Table 96</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 97">Table 97</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 98">Table 98</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 99">Table 99</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 100">Table 100</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 101">Table 101</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 102">Table 102</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 103">Table 103</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 104">Table 104</a> ) <li>SIG (inclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 105">Table 105</a> ) <li>DSIG/DMT_BB4L (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 106">Table 106</a> ) <li>DSIG/DPT_BB (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 107">Table 107</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 108">Table 108</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 109">Table 109</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 110">Table 110</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 111">Table 111</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 112">Table 112</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 113">Table 113</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 114">Table 114</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 115">Table 115</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 116">Table 116</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 117">Table 117</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 118">Table 118</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 119">Table 119</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 120">Table 120</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 121">Table 121</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 122">Table 122</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 123">Table 123</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 124">Table 124</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 125">Table 125</a> ) <li>DSIG/Dn_JETS (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 126">Table 126</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 127">Table 127</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 128">Table 128</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 129">Table 129</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 130">Table 130</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 131">Table 131</a> ) <li>SIG (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 132">Table 132</a> ) <li>SIG (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 133">Table 133</a> ) <li>SIG (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 134">Table 134</a> ) <li>SIG (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 135">Table 135</a> ) <li>SIG (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 136">Table 136</a> ) <li>SIG (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 137">Table 137</a> ) <li>SIG (inclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 138">Table 138</a> ) <li>SIG (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 139">Table 139</a> ) <li>SIG (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 140">Table 140</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 141">Table 141</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 142">Table 142</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 143">Table 143</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 144">Table 144</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 145">Table 145</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 146">Table 146</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 147">Table 147</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 148">Table 148</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 149">Table 149</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 150">Table 150</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 151">Table 151</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 152">Table 152</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 153">Table 153</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 154">Table 154</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 155">Table 155</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 156">Table 156</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 157">Table 157</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 158">Table 158</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 159">Table 159</a> ) <li>1/SIG*DSIG/DMT_BB4L (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 160">Table 160</a> ) <li>1/SIG*DSIG/DPT_BB (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 161">Table 161</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 162">Table 162</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 163">Table 163</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 164">Table 164</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 165">Table 165</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 166">Table 166</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 167">Table 167</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 168">Table 168</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 169">Table 169</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 170">Table 170</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 171">Table 171</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 172">Table 172</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 173">Table 173</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 174">Table 174</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 175">Table 175</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 176">Table 176</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 177">Table 177</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 178">Table 178</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 179">Table 179</a> ) <li>1/SIG*DSIG/Dn_JETS (inclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 180">Table 180</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 181">Table 181</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 182">Table 182</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 183">Table 183</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 184">Table 184</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 185">Table 185</a> ) </ul>

Absolute differential cross-section as a function of $m^{bl}_{minimax}$ at particle level in the exclusive topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections. The covariance matrices are evaluated using pseudo-experiments for data and MC statistical uncertainties, and added to the individual covariance matrices for the remaining uncertainties, as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

Covariance matrix of the absolute differential cross-section as function of $m^{bl}_{minimax}$ at particle level in the exclusive topology, accounting for the data statistical uncertainties.

More…

Study of $\langle p_{\rm T} \rangle$ and its higher moments, and extraction of the speed of sound in Pb-Pb collisions with ALICE

The ALICE collaboration Abualrob, Ibrahim Jaser ; Acharya, Shreyasi ; Aglieri Rinella, Gianluca ; et al.
JHEP 11 (2025) 076, 2025.
Inspire Record 2933773 DOI 10.17182/hepdata.165515

Ultrarelativistic heavy-ion collisions produce a state of hot and dense strongly interacting QCD matter called quark--gluon plasma (QGP). On an event-by-event basis, the volume of the QGP in ultracentral collisions is mostly constant, while its total entropy can vary significantly due to quantum fluctuations, leading to variations in the temperature of the system. Exploiting this unique feature of ultracentral collisions allows for the interpretation of the correlation of the mean transverse momentum of produced charged hadrons and the number of charged hadrons as a measure for the speed of sound. It is determined by fitting the relative increase in transverse momentum with respect to the relative change in the average charged-particle density measured at midrapidity. This study reports the event-average transverse momentum of charged particles as well as the self-normalized variance, skewness, and kurtosis of the event-by-event transverse momentum distribution in ultracentral Pb-Pb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair using the ALICE detector. Different centrality estimators based on charged-particle multiplicity or the transverse energy of the event are used to select ultracentral collisions. By ensuring a pseudorapidity gap between the region used to define the centrality and the region used to perform the measurement, the influence of biases on the rise of the mean transverse momentum is tested. The measured values are found to strongly depend on the exploited centrality estimator. The variance shows a steep decrease towards ultracentral collisions, while the skewness variables show a maximum, followed by a fast decrease. These non-Gaussian features are understood in terms of the vanishing of the impact-parameter fluctuations contributing to the event-to-event transverse momentum distribution.

35 data tables

Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimators based on $N_{\mathrm{ch}}$, ${N_{\mathrm{tracklets}}}$, and $E_{\mathrm{T}}$ within $|\eta|\leq 0.8$.

Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $-3.7<\eta<-1.7$ and $2.8 < \eta <5.1$.

Normalized $p_{\mathrm{T}}$-spectrum ratio as a function as a function of centrality in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $0.5 \leq |\eta|\leq 0.8$.

More…

Observation of $t\bar{t}\gamma\gamma$ production at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-125, 2025.
Inspire Record 2930296 DOI 10.17182/hepdata.159299

This paper presents the first observation of top-quark pair production in association with two photons ($t\bar{t}\gamma\gamma$). The measurement is performed in the single-lepton decay channel using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider. The data correspond to an integrated luminosity of 140 fb$^{-1}$ recorded during Run 2 at a centre-of-mass energy of 13 TeV. The $t\bar{t}\gamma\gamma$ production cross section, measured in a fiducial phase space based on particle-level kinematic criteria for the lepton, photons, and jets, is found to be $2.42^{+0.58}_{-0.53}\, \text{fb}$, corresponding to an observed significance of 5.2 standard deviations. Additionally, the ratio of the production cross section of $t\bar{t}\gamma\gamma$ to top-quark pair production in association with one photon is determined, yielding $(3.30^{+0.70}_{-0.65})\times 10^{-3}$.

3 data tables

Measured $t\bar{t}\gamma\gamma$ production fiducial inclusive cross-section in single-lepton decay channel.

Measured ratio of production cross sections of $t\bar{t}\gamma\gamma$ to $t\bar{t}\gamma$ in single-lepton decay channel.

Summary of the relative impact of all the systematic uncertainties, in percentage, on the $t\bar{t}\gamma\gamma$ fiducial inclusive cross section and $R_{t\bar{t}\gamma\gamma/t\bar{t}\gamma}$ grouped into different categories. The category ‘Jet’ corresponds to the effect of JES, jet resolution and JVT uncertainties, ‘Photon’ and ‘Leptons’ include all experimental uncertainties related to photons and leptons (including trigger uncertainties), respectively.


Measurements of $W^+W^-$ production cross-sections in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 08 (2025) 142, 2025.
Inspire Record 2923238 DOI 10.17182/hepdata.156818

Measurements of $W^+W^-\rightarrow e^\pm νμ^\mp ν$ production cross-sections are presented, providing a test of the predictions of perturbative quantum chromodynamics and the electroweak theory. The measurements are based on data from $pp$ collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The number of events due to top-quark pair production, the largest background, is reduced by rejecting events containing jets with $b$-hadron decays. An improved methodology for estimating the remaining top-quark background enables a precise measurement of $W^+W^-$ cross-sections with no additional requirements on jets. The fiducial $W^+W^-$ cross-section is determined in a maximum-likelihood fit with an uncertainty of 3.1%. The measurement is extrapolated to the full phase space, resulting in a total $W^+W^-$ cross-section of $127\pm4$ pb. Differential cross-sections are measured as a function of twelve observables that comprehensively describe the kinematics of $W^+W^-$ events. The measurements are compared with state-of-the-art theory calculations and excellent agreement with predictions is observed. A charge asymmetry in the lepton rapidity is observed as a function of the dilepton invariant mass, in agreement with the Standard Model expectation. A CP-odd observable is measured to be consistent with no CP violation. Limits on Standard Model effective field theory Wilson coefficients in the Warsaw basis are obtained from the differential cross-sections.

63 data tables

Measured fiducial cross-section compared with theoretical predictions from MiNNLO+Pythia8, Geneva+Pythia8, Sherpa2.2.12, and MATRIX2.1. The predictions are based on the NNPDF3.0 (red squares) and NNPDF3.1 luxQED (blue dots) PDF sets. The nNNLO predictions include photon-induced contributions (always using NNPDF3.1 luxQED) and NLO QCD corrections to the gluon-gluon initial state. The $q\bar{q}\rightarrow WW$ predictions from MiNNLO, Geneva, and Sherpa2.2.12 are combined with a Sherpa2.2.2 prediction of gluon-induced production, scaled by an inclusive NLO K-factor of 1.7. Inner (outer) error bars on the theory predictions correspond to PDF (the combination of scale and PDF) uncertainties. The MATRIX nNNLO QCD $\otimes$ NLO EW prediction using NNPDF3.1 luxQED, the best available prediction of the integrated fiducial cross-section, is in good agreement with the measurement.

Fiducial differential cross-sections as a function of $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$. The measured cross-section values are shown as points with error bars giving the statistical uncertainty and solid bands indicating the size of the total uncertainty. The right-hand-side axis indicates the integrated cross-section of the rightmost bin. The results are compared to fixed-order nNNLO QCD + NLO EW predictions of Matrix 2.1, with the NNLO + PS predictions from Powheg MiNNLO + Pythia8 and Geneva + Pythia8, as well as Sherpa2.2.12 NLO + PS predictions. The last three predictions are combined with Sherpa 2.2.2 for the $gg$ initial state and Sherpa 2.2.12 for electroweak $WWjj$ production. These contributions are modelled at LO but a NLO QCD $k$-factor of 1.7 is applied for gluon induced production. Theoretical predictions are indicated as markers with vertical lines denoting PDF, scale and parton shower uncertainties. Markers are staggered for better visibility.

Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$.

More…

Search for new physics in final states with semi-visible jets or anomalous signatures using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 112 (2025) 012021, 2025.
Inspire Record 2918816 DOI 10.17182/hepdata.159761

A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics, with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant production of a $Z'$ mediator. The ATLAS experiment dataset collected at the Large Hadron Collider from 2015 to 2018 is used, consisting of proton-proton collisions at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 140 fb$^{-1}$. The $Z'$ mediator is considered to decay to two dark quarks, which each hadronize and decay to showers containing both dark and Standard Model particles, producing a topology of interacting and non-interacting particles within a jet known as ``semi-visible". Machine learning methods are used to select these dark showers and reject the dominant background of mismeasured multijet events, including an anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A resonance search is performed by fitting the transverse mass spectrum based on a functional form background estimation. No significant excess over the expected background is observed. Results are presented as limits on the production cross section of semi-visible jet signals, parameterized by the fraction of invisible particles in the decay and the $Z'$ mass, and by quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.

6 data tables

Acceptance times efficiency weighted yields across the signal grid.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.2 signal points.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.4 signal points.

More…

Femtoscopic study of the proton-proton and proton-deuteron systems in heavy-ion collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Aglieri Rinella, Gianluca ; Aglietta, Luca ; et al.
Phys.Lett.B 871 (2025) 139921, 2025.
Inspire Record 2917986 DOI 10.17182/hepdata.165812

This work reports femtoscopic correlations of p$-$p ($\bar{\rm p}-\bar{\rm p}$) and p$-$d ($\bar{\rm p}-\bar{\rm d}$) pairs measured in Pb$-$Pb collisions at center-of-mass energy per nucleon $\sqrt{s_{\rm NN}}$ = 5.02 TeV in the ALICE Collaboration. A fit to the measured proton-proton correlation functions allows one to extract the dependence of the nucleon femtoscopic radius of the particle-emitting source on the pair transverse mass ($m_\text{T}$) and on the average charge particle multiplicity $\langle\text{dN}_\text{ch}/\text{d}η\rangle^{1/3}$ for three centrality intervals (0$-$10$\%$, 10$-$30$\%$, 30$-$50$\%$). In both cases, the expected power-law and linear scalings are observed, respectively. The measured p$-$d correlations can be described by both two- and three-body calculations, indicating that the femtoscopy observable is not sensitive to the short-distance features of the dynamics of the p$-$(p$-$n) system, due to the large inter-particle distances in Pb$-$Pb collisions at the LHC. Indeed, in this study, the minimum measured femtoscopic source sizes for protons and deuterons have a minimum value at $2.73^{+0.05}_{-0.05}$ and $3.10^{+1.04}_{-0.86}$ fm, respectively, for the 30$-$50$\%$ centrality collisions. Moreover, the $m_{\rm{T}}$-scaling obtained for the p$-$p and p$-$d systems is compatible within 1$σ$ of the uncertainties. These findings provide new input for fundamental studies on the production of light (anti)nuclei under extreme conditions.

23 data tables

proton-proton (same charge) correlation function for centrality 0-10% from Pb-Pb collisions at 5020 GeV

proton-proton (same charge) correlation function for centrality 10-30% from Pb-Pb collisions at 5020 GeV

proton-proton (same charge) correlation function for centrality 30-50% from Pb-Pb collisions at 5020 GeV

More…

Measurements of Higgs boson production via gluon-gluon fusion and vector-boson fusion using $H\rightarrow WW^\ast \rightarrow \ellν\ellν$ decays in $pp$ collisions with the ATLAS detector and their effective field theory interpretations

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 85 (2025) 1403, 2025.
Inspire Record 2910761 DOI 10.17182/hepdata.157266

Higgs boson production cross-sections via gluon-gluon fusion and vector-boson fusion in proton-proton collisions are measured in the $H\rightarrow WW^\ast \rightarrow \ellν\ellν$ decay channel. The Large Hadron Collider delivered proton-proton collisions at a centre-of-mass energy of $13\,\textrm{TeV}$ between 2015 and 2018, which were recorded by the ATLAS detector, corresponding to an integrated luminosity of $140\,\textrm{fb}^{-1}$. The total cross-sections for Higgs boson production by gluon-gluon fusion and vector-boson fusion times the $H\rightarrow WW^\ast$ branching ratio are measured to be $12.4^{+1.3}_{-1.2}\,\textrm{pb}$ and $0.79^{+0.18}_{-0.16}\,\textrm{pb}$, respectively, in agreement with the Standard Model predictions. Higgs boson production is further characterised through measurements of Simplified Template Cross-Sections in a total of fifteen kinematic fiducial regions. A new scheme of kinematic fiducial regions has been introduced to enhance the sensitivity to CP-violating effects in Higgs boson interactions. Both schemes are used to constrain CP-even and CP-odd dimension-six operators in the Standard Model effective field theory.

75 data tables

Expected values and uncertainties for the $H \to WW^{\ast}$ cross-sections measured in each of the STXS categories, normalised to the corresponding SM predictions.

Best-fit values and uncertainties for the $H \to WW^{\ast}$ cross-sections measured in each of the STXS categories, normalised to the corresponding SM predictions.

Expected correlations between the production cross-sections multiplied by the $H \to WW^{\ast}$ branching ratio for each of the STXS categories.

More…