We present results from a search for anomalous WW and WZ production in ppbar collisions at sqrt(s) = 1.8 TeV. We used ppbar->evjjX events observed during the 1992-1993 run of the Fermilab Tevatron collider, corresponding to an integrated luminosity of 13.7 +- 0.7 pb^-1. A fit to the transverse momentum spectrum of the W boson yields direct limits on the CP-conserving anomalous WWgamma and WWZ coupling parameters of -0.9 < delta kappa < 1.1 (with lambda = 0) and -0.6 < lambda < 0.7 (with delta kappa = 0) at the 95% confidence level, for a form factor scale Lambda = 1.5 TeV, assuming that the WWgamma and WWZ coupling parameters are equal.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.
The inclusive production of the neutral vector mesons K*0(892) and ϕ(1020), and of the tensor meson ${⤪ K}_{2}^{⇒t 0}(1430)$, in hadronic decays of the Z has been measured by the DELPHI detector at LEP. The average production rates per hadronic Z decay have been determined to be 0.77 ± 0.08 K*0(892), 0.104 ± 0.008 ϕ(1020) and ${⤪ K}_{2}^{⇒t 0}(1430)$. The ratio of the tensor-to-vector meson production yields, $«ngle {⤪ K}_{2}^{⇒t 0}(1430)»ngle$, is smaller than the 〈f2(1270)〉/〈ρ0(770)〉 and $«ngle f_{2}^{⌕ime}(1525)»ngle$ ratios measured by DELPHI. The production rates and differential cross sections are compared with the predictions of JETSET 7.4 tuned to the DELPHI data and of HERWIG 5.8. The K*0(892) and ϕ(1020) data are compatible with model predictions, but a large disagreement is observed for the ${⤪ K}_{2}^{⇒t 0}(1430)$.
SIG in (1/SIG) is the total hadronic cross section. The statistical and systematic errors are combined quadratically.
SIG in (1/SIG) is the total hadronic cross section. The erros are statistical ones. The cross sections SIG(C=A), SIG(C=B), and SIG(C=C) obtained with A) both kaons identified, B) at least one kaon identified, and C) without requiring kaon identification.
SIG in (1/SIG) is the total hadronic cross section. The statistical and systematic erros are combined quadratically. For 0.05<X<0.2 the resulting cross s ection was taken by averaging the results with both identified kaons and with at least one identified kaon, for 0.2<X<1 the results obtained without particle id entification.
A measurement of theτ lepton polarization and its forward-backward asymmetry at the Z0 resonance using the OPAL detector is described. The measurement is based on analyses of τ→ρντ, ττπ(K)ντ,\(\tau\to e\bar \nu _e \nu _\tau\),\(\tau\to \mu \bar \nu _\mu\nu _\tau\) andτ→a1ντ decays from a sample of 89075 e+e−→τ+τ− candidates corresponding to an integrated luminosity of 117 pb−1. Assuming that theτ lepton decays according to V-A theory, we measure the averageτ polarization at √s=MZ to be 〈P〉=(−13.0±0.9±0.9)% and theτ polarization forward-backward asymmetry to be ApolFB=(−9.4±1.0±0.4)%, where the first error is statistical and the second systematic. These results are consistent with the hypothesis of lepton universality and, when combined, can be expressed as a measurement of sin2θefflept=0.2334±0.0012 within the context of the Standard Model.
No description provided.
The B<sup loc="post">0</sup> - B̄<sup loc="post">0</sup> average mixing parameter <math altimg="si1.gif"><rm><ovl type="bar" style="s">χ</ovl></rm></math> and b forward-backward asymmetry AFB<sup loc="post">0</sup>(b) are measured from a sample of about 4 200 000 Z → qq̄ events recorded with the ALEPH detector at LEP in the years 1990–1995. High transverse momentum electrons and muons produced in b semileptonic decays provide the tag of the quark flavour and of its charge. The average mixing parameter and the pole b asymmetry are measured to be <math altimg="si1.gif"><rm><ovl type="bar" style="s">χ</ovl></rm></math> = 0.1246 ± 0.0051stat ± 0.0052syst, AFB<sup loc="post">0</sup>(b) = 0.1008 ± 0.0043stat ± 0.0028syst. The value of sin<sup loc="post">2</sup>θw<sup loc="post">eff</sup> = 0.23198 ± 0.00092 is extracted from the asymmetry measurement.
ASYM(N=FB,C=OBSERVED) is observed asymmetry including BQ, CQ and backround.
No description provided.
A search for the neutral Higgs boson in the processes e + e − → Z → H 0 γ → q q γ and e + e − → Z → Z ∗ H 0 → q q γγ has been performed using 2.8 million hadronic Z decays collected with the L3 detector at LEP from 1991 through 1994. No evidence for these processes has been observed. Upper limits at 95% confidence level for the corresponding cross sections have been set and the results have been compared with theoretical predictions beyond the Standard Model.
The magnitude of the cross section is multiplied on the branching ratio.
Results on \jpsi\ production in $e p$ interactionsin the H1 experiment at HERA are presented. The \jpsi\ mesons are produced by almost real photons ($Q~2\approx 0$) and detected via their leptonic decays. The data have been taken in 1994 and correspond to an integrated luminosity of $2.7\,\mbox{pb}~{-1}$. The $\gamma p$ cross section for elastic \jpsi\ production is observed to increase strongly with the \cm\ energy. The cross section for diffractive $J/\psi$ production with proton dissociation is found to be of similar magnitude as the elastic cross section. Distributions of transverse momentum and decay angle are studied and found to be in accord with a diffractive production mechanism. For inelastic \jpsi\ production the total $\gamma p$ cross section, the distribution of transverse momenta, and the elasticity of the \jpsi\ are compared to NLO QCD calculations in a colour singlet model and agreement is found. Diffractive \psiprime\ production has been observed and a first estimate of the ratio to \jpsi\ production in the HERA energy regime is given.
J/PSI reconstructed via MU+ MU- decay mode.
J/PSI reconstructed via E+ E- decay mode.
J/PSI reconstructed via MU+ MU- decay mode.
The Michel parameters ϱ, η, ξ, and ξδ, the chirality parameter ξ h and the τ polarization P τ are measured using 32012 τ pair decays. Their values are extracted from the energy spectra of leptons and hadrons in τ − → l − ν l ν τ and τ − → π − ν τ decays, the energy and decay angular distributions in τ − → ϱ − ν τ decays, and the correlations in the energy spectra and angular distributions of the decay products. Assuming universality in leptonic and semileptonic τ decays, the results are ϱ = 0.794±0.039±0.031, η = 0.25±0.17±0.11, ξ = 0.94±0.21±0.07, ξδ = 0.81±0.14±0.06, ξ h = −0.970±0.053±0.011, and P τ = −0.154±0.018±0.012. The measurement is in agreement with the V-A hypothesis for the weak charged current.
No description provided.
We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75<Mee<105GeV/c2. These results are consistent with the standard model values of 0.528±0.009 and 0.052±0.002, respectively.
The forward-backward asymmetry resuts from angular differential cross section : D(SIG)/D(COS(THETA*) = A*(1 + COS(THETA*)**2) + B*COS(THETA*), where THETA * is the emission angle of the E- relative to the quark momentum in the rest frame of the E+ E- pair.
Diffractive scattering of $\gamma~* p \to X + N$, where $N$ is either a proton or a nucleonic system with $M_N<4$GeV has been measured in deep inelastic scattering (DIS) at HERA. The cross section was determined by a novel method as a function of the $\gamma~* p$ c.m. energy $W$ between 60 and 245GeV and of the mass $M_X$ of the system $X$ up to 15GeV at average $Q~2$ values of 14 and 31GeV$~2$. The diffractive cross section $d\sigma~{diff} /dM_X$ is, within errors, found to rise linearly with $W$. Parameterizing the $W$ dependence by the form $d\sigma~{diff}/dM_X \propto (W~2)~{(2\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} -2)}$ the DIS data yield for the pomeron trajectory $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} = 1.23 \pm 0.02(stat) \pm 0.04 (syst)$ averaged over $t$ in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ extracted from soft interactions. The value of $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates from processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton $F~{D(3)}_2(\beta,Q~2, \mbox{$x_{_{I\hspace{-0.2em}P}}$})$ has been determined, where $\beta$ is the momentum fraction of the struck quark in the pomeron. The form $F~{D(3)}_2 = constant \cdot (1/ \mbox{$x_{_{I\hspace{-0.2em}P}}$})~a$ gives a good fit to the data in all $\beta$ and $Q~2$ intervals with $a = 1.46 \pm 0.04 (stat) \pm
No description provided.
No description provided.
No description provided.
The inclusive production of the f ′ 2 (1525) in hadronic Z 0 decays has been studied in data collected by the DELPHI detector at LEP. The Ring Imaging Cherenkov detectors were important tools in the identification of the decay f ′ 2 (1525) → K + K − . The average number of f ′ 2 (1525) produced per hadronic Z decay, 〈f′ 2 〉 = 0.020 ± 0.005 (stat) ± 0.006 (syst), and the momentum distribution of the f ′ 2 (1525) have both been measured. The mass and width of the f ′ 2 (1525) are found to be 〈M f′ 2 〉 = 1535 ± 5 (stat) ± 4 (syst) MeV/c 2 , (T f′ 2 ;) = 60 ± 20 (stat) ± 19 (syst) MeV/c 2
SIG in (1/SIG) is the total hadronic cross section.
No description provided.