The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.
We present an analysis of multiplicity distributions of charged particles produced inZ0 hadronic decays. The results are based on the analysis of 82941 events collected within 100 MeV of theZ0 peak energy with the OPAL detector at LEP. The charged particle multiplicity distribution, corrected for initial-state radiation and for detector acceptance and resolution, was found to have a mean 〈nch〉=21.40±0.02(stat.)±0.43(syst.) and a dispersionD=6.49±0.02(stat.)±0.20(syst.). The shape is well described by the Lognormal and Gamma distributions. A negative binomial parameterisation was found to describe the shape of the multiplicity distribution less well. A comparison with results obtained at lower energies confirms the validity of KNO(-G) scaling up to LEP energies. A separate analysis of events with low sphericity, typically associated with two-jet final states, shows the presence of features expected for models based on a stochastic production mechanism for particles. In all cases, the features observed in the data are well described by the Lund parton shower model JETSET.
We present a study of the inclusive production of neutral pions and charged particles from 112 000 hadronic Z 0 decays. The measured inclusive momentum distributions can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results to e + e − data between √ s = 9 and 91 GeV, we findfind that the evolution of the spectra with center of mass energy is consistent with the QCD predictions.
We present a study of jet multiplicities based on 37 000 hadronic Z 0 boson decays. From this data we determine the strong coupling constant α s =0.115±0.005 ( exp .) −0.010 +0.012 (theor.) to second order QCD at √ s =91.22GeV.
We have tested extra Z models in the reactions e + e − → μ + μ − , τ + τ − and hadrons in the energy range 50< s <64 GeV using the VENUS detector at the TRISTAN e + e − storage ring. Our data are in good agreement with the standard model prediction ( χ 2 N Df = 2.9 31 ) ). We have obtained 90% confidence-level lower limits of 105, 125 and 231 GeV for the masses of Z Ψ , Z η and Z χ bosons which are expected from the E 6 grand unified theory. We also place a 90% confidence-level lower limit of 426 GeV for the mass of an extra-Z boson whose couplings to quarks and leptons are assumed to be the same as those for the standard Z boson. Our results exceed the previous experimental limits from the p p collider experiments, although there have been some combined analyses reporting the limits better than those obtained in the present analysis.
We have measured the total e + e − hadronic annihilation cross section at the center of mass energies between 50.0 GeV and 61.4 GeV with the TOPAZ detector at TRISTAN. The full electroweak radiative corrections (up to O(α 3 )) were applied to the data which were analysed together with the published data from PEP and PETRA. We then determined the standard model parameters, M z (the mass of the Z), sin w 2 θ (the Weinberg angle) and Λ MS (the QCD scale parameter) by comparing the experimental data with the prediction of the standard model. The best fit values are M z = 89.2 −1.8 +2.1 GeV/c 2 , sin 2 θ w = 0.233 −0.025 +0.035 and Λ MS = 0.327 −0.206 +0.275 GeV. A constraint is obtained on the heavy top quark mass through the radiative corrections if we take the SLC value of M z (91.1 GeV / c 2 ).
We accumulated e + e − annihilations into multi-hadrons at CM energies between 54.0 and 61.4 GeV with the VENUS detector at TRISTAN. Measured R -ratios are consistent with the standard model using the Z-boson mass; 91.1 GeV/ c 2 . Using two new observables, we searched for a planar four-jet and other multi-jet events resulting from the decay of a charge — 1 3 e b ' quark. Having observed no positive signals, we excluded b' masses between 19.4 and 28.2 GeV/ c 2 with a 95% confidence level, regardless of branching into charged current and loop-induced flavor-changing neutral current decay, including a possible Higgs decay process. The charge + 2 3 e top quark was excluded below f30.2 GeV/ c 2 .
We report on the first observation of Δ(1232) ++ and Δ(1232)++¯ baryons in e + e − annihilation at energies around 10 GeV, using the ARGUS detector at DORIS II. The sum of the rates of Δ ++ and Δ++¯ per hadronic event in the continuum is measured to be 0.040±0.008±0.006, and the rate in direct ϒ(1S) decays is 0.124±0.016±0.015. The momentum spectrum of Δ ++ baryons in direct ϒ(1S) decays has been measured.
We studied the energy-energy correlation (EEC) and its asymmetry (AEEC) using e + e − hadronic annihilation events obtained at √ s =53.3 GeV and 59.5 GeV with the TOPAZ detector at the TRISTAN collider. We used a Monte Carlo simulation combined with the QCD matrix elements by Gottschalk and Shatz and the Lund string fragmentation model. By comparing the experimental data with simulated events, we determined the strong coupling constant α s at both energies. The results are 0.129±0.007 (stat) ±0.010 (syst) at √ s =53.3 GeV and 0.122±0.008 (stat) ±0.010 (syst) at 59.5 GeV.
We have examined charged multiplicities arising from p − p and p− p ̄ collisions over the range of center of mass energies, s , from 30 GeV to 1800 GeV. Results from Tevatron experiment E735 support the presence of double parton interactions. These processes can be seen to account for a large fraction of the increase in the non single diffraction inelastic cross section from energies of about 200 GeV to 1800 GeV.