Version 3
A search for high-mass resonances decaying to $\tau\nu$ in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 120 (2018) 161802, 2018.
Inspire Record 1649273 DOI 10.17182/hepdata.80812

A search for high-mass resonances decaying to $\tau\nu$ using proton-proton collisions at $\sqrt{s}$ = 13 TeV produced by the Large Hadron Collider is presented. Only $\tau$-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. No statistically significant excess above the Standard Model expectation is observed; model-independent upper limits are set on the visible $\tau\nu$ production cross section. Heavy $W^{\prime}$ bosons with masses less than 3.7 TeV in the Sequential Standard Model and masses less than 2.2-3.8 TeV depending on the coupling in the non-universal G(221) model are excluded at the 95% credibility level.

24 data tables match query

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\phi$ = 5.5) $W^{\prime}$ signals with masses of 3 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table. The table also contains each background contribution to the Standard Model expectation separately with their statistical uncertainties.

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\phi$ = 5.5) $W^{\prime}$ signals with masses of 3 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table.

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\phi$ = 5.5) $W^{\prime}$ signals with masses of 3 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table.

More…

Measurement of the Higgs boson coupling properties in the $H\rightarrow ZZ^{*} \rightarrow 4\ell$ decay channel at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 03 (2018) 095, 2018.
Inspire Record 1641268 DOI 10.17182/hepdata.83009

The coupling properties of the Higgs boson are studied in the four-lepton decay channel using 36.1 fb$^{-1}$ of $pp$ collision data from the LHC at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. Cross sections are measured for the four key production modes in several exclusive regions of the Higgs boson production phase space and are interpreted in terms of coupling modifiers. The inclusive cross section times branching ratio for $H \rightarrow ZZ^*$ decay and for a Higgs boson absolute rapidity below 2.5 is measured to be $1.73^{+0.24}_{-0.23}$(stat.)$^{+0.10}_{-0.08}$(exp.)$\pm 0.04$(th.) pb compared to the Standard Model prediction of $1.34\pm0.09$ pb. In addition, the tensor structure of the Higgs boson couplings is studied using an effective Lagrangian approach for the description of interactions beyond the Standard Model. Constraints are placed on the non-Standard-Model CP-even and CP-odd couplings to $Z$ bosons and on the CP-odd coupling to gluons.

28 data tables match query

The expected number of SM Higgs boson events with a mass mH= 125.09 GeV in the mass range 118 < m4l < 129 GeV for an integrated luminosity of 36.1/fb and sqrt(s)= 13 TeV in each reconstructed event category, shown separately for each Stage-0 production bin. The ggF and bbH contributions are shown separately but both contribute to the same (ggF) production bin. Statistical and systematic uncertainties are added in quadrature.

The observed and expected numbers of signal and background events in the four-lepton decay channels for an integrated luminosity of 36.1/fb and at sqrt(s)= 13 TeV, assuming the SM Higgs boson signal with a mass m_{H} = 125.09 GeV . The second column shows the expected number of signal events for the full mass range while the subsequent columns correspond to the mass range of 118 < m4l < 129 GeV. In addition to the ZZ* background, the contribution of other backgrounds is shown, comprising the data-driven estimate from Table 4 and the simulation-based estimate of contributions from rare triboson and tbar{t}V processes. Statistical and systematic uncertainties are added in quadrature.

The expected and observed numbers of signal events in reconstructed event categories for an integrated luminosity of 36.1/fb at sqrt(s)= 13 TeV, together with signal acceptances for each Stage-0 production mode. Results are obtained in bins of BDT discriminants using coarse binning with several bins merged into one. Signal acceptances less than 0.0001 are set to 0.

More…

Measurement of the inclusive and fiducial $t\bar{t}$ production cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 487, 2018.
Inspire Record 1644099 DOI 10.17182/hepdata.81945

The inclusive and fiducial $t\bar{t}$ production cross-sections are measured in the lepton+jets channel using 20.2 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. Major systematic uncertainties due to the modelling of the jet energy scale and $b$-tagging efficiency are constrained by separating selected events into three disjoint regions. In order to reduce systematic uncertainties in the most important background, the W+jets process is modelled using Z+jets events in a data-driven approach. The inclusive $t\bar{t}$ cross-section is measured with a precision of 5.7% to be $\sigma_{\text{inc}}(t\bar{t})$ = 248.3 $\pm$ 0.7 (stat.) $\pm$ 13.4 (syst.) $\pm$ 4.7 (lumi.) pb, assuming a top-quark mass of 172.5 GeV. The result is in agreement with the Standard Model prediction. The cross-section is also measured in a phase space close to that of the selected data. The fiducial cross-section is $\sigma_{\text{fid}}(t\bar{t})$ = 48.8 $\pm$ 0.1 (stat.) $\pm$ 2.0 (syst.) $\pm$ 0.9 (lumi.) pb with a precision of 4.5%.

2 data tables match query

The measured inclusive cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity

The measured fiducial cross section. The first systematic uncertainty (sys_1) is the combined systematic uncertainty excluding luminosity, the second (sys_2) is the luminosity


Measurement of the $t\bar{t}\gamma$ production cross section in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 086, 2017.
Inspire Record 1604029 DOI 10.17182/hepdata.81946

The cross section of a top-quark pair produced in association with a photon is measured in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV with $20.2$ fb$^{-1}$ of data collected by the ATLAS detector at the Large Hadron Collider in 2012. The measurement is performed by selecting events that contain a photon with transverse momentum $p_\mathrm{T} > 15$ GeV, an isolated lepton with large transverse momentum, large missing transverse momentum, and at least four jets, where at least one is identified as originating from a $b$-quark. The production cross section is measured in a fiducial region close to the selection requirements. It is found to be $139 \pm 7 (\mathrm{stat.}) \pm 17 (\mathrm{syst.})$ fb, in good agreement with the theoretical prediction at next-to-leading order of $151 \pm 24$ fb. In addition, differential cross sections in the fiducial region are measured as a function of the transverse momentum and pseudorapidity of the photon.

3 data tables match query

The measured fiducial cross sections. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty

differential cross section as function of the photon pT. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty

differential cross section as function of the photon pseudorapidity. The first uncertainty is the statistical uncertainty and the second is the systematic uncertainty


Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 199, 2018.
Inspire Record 1632760 DOI 10.17182/hepdata.80462

A search for doubly charged Higgs bosons with pairs of prompt, isolated, highly energetic leptons with the same electric charge is presented. The search uses a proton-proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to 36.1 $\mathrm{fb}^{-1}$ of integrated luminosity recorded in 2015 and 2016 by the ATLAS detector at the LHC. This analysis focuses on the decays $H^{\pm\pm}\rightarrow e^{\pm}e^{\pm}$, $H^{\pm\pm}\rightarrow e^{\pm}\mu^{\pm}$ and $H^{\pm\pm}\rightarrow \mu^{\pm}\mu^{\pm}$, fitting the dilepton mass spectra in several exclusive signal regions. No significant evidence of a signal is observed and corresponding limits on the production cross-section are derived at 95% confidence level. The observed lower limit on the mass of a doubly charged Higgs boson only coupling to left-handed leptons ($e$,$\mu$) varies from 770 GeV to 870 GeV (850 GeV expected) for $B(H^{\pm\pm}\rightarrow \ell^{\pm}\ell^{\pm})$ = 100% and both the expected and observed mass limits are above 450 GeV for $B(H^{\pm\pm}\rightarrow \ell^{\pm}\ell^{\pm})$ = 10% and any combination of partial branching ratios.

32 data tables match query

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 100\%$, $B(e \mu ) = 0\%$, and $B( \mu \mu ) = 0\%$.

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 0\%$, $B(e \mu ) = 0\%$, and $B( \mu \mu ) = 100\%$.

Observed and expected upper limit on the cross-section for $pp \to H^{++}H^{--}$ for a combination of partial branching ratios of $B(ee) = 0\%$, $B(e \mu ) = 100\%$, and $B( \mu \mu ) = 0\%$.

More…

Search for $W' \rightarrow tb$ decays in the hadronic final state using pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 781 (2018) 327-348, 2018.
Inspire Record 1650152 DOI 10.17182/hepdata.82286

A search for $W'$-boson production in the $W' \rightarrow t\bar{b} \rightarrow q\bar{q}' b\bar{b}$ decay channel is presented using 36.1 fb$^{-1}$ of 13 TeV proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The search is interpreted in terms of both a left-handed and a right-handed chiral $W'$ boson within the mass range 1-5 TeV. Identification of the hadronically decaying top quark is performed using jet substructure tagging techniques based on a shower deconstruction algorithm. No significant deviation from the Standard Model prediction is observed and the results are expressed as upper limits on the $W' \rightarrow t\bar{b}$ production cross-section times branching ratio as a function of the $W'$-boson mass. These limits exclude $W'$ bosons with right-handed couplings with masses below 3.0 TeV and $W'$ bosons with left-handed couplings with masses below 2.9 TeV, at the 95% confidence level.

6 data tables match query

Observed and expected 95% CL limits on the right-handed W'-boson cross-section times branching ratio of W' to tb decay as a function of the corresponding W'-boson mass.

Observed and expected 95% CL limits on the left-handed W'-boson cross-section times branching ratio of W' to tb decay as a function of the corresponding W'-boson mass.

Reconstructed mtb distribution in data and for the background after the fit to the data in the signal region SR1. The statistical uncertainty on data points is calculated using assymetric Poisson confidence intervals.

More…

Version 2
Search for new phenomena with large jet multiplicities and missing transverse momentum using large-radius jets and flavour-tagging at ATLAS in 13 TeV $pp$ collisions

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2017) 034, 2017.
Inspire Record 1615205 DOI 10.17182/hepdata.77893

A search is presented for particles that decay producing a large jet multiplicity and invisible particles. The event selection applies a veto on the presence of isolated electrons or muons and additional requirements on the number of b-tagged jets and the scalar sum of masses of large-radius jets. Having explored the full ATLAS 2015-2016 dataset of LHC proton-proton collisions at $\sqrt{s}=13~\mathrm{TeV}$, which corresponds to 36.1 fb$^{-1}$ of integrated luminosity, no evidence is found for physics beyond the Standard Model. The results are interpreted in the context of simplified models inspired by R-parity-conserving and R-parity-violating supersymmetry, where gluinos are pair-produced. More generic models within the phenomenological minimal supersymmetric Standard Model are also considered.

180 data tables match query

Post-fit yields for each signal region in the multijets analysis. Summary of all 27 signal regions (post-fit).

Post-fit yields for each signal region in the multijets analysis. Summary of all 27 signal regions (post-fit).

Number of signal events expected for 36.1 fb$^{-1}$ at different stages of the event selection for the signal region SR-7j80-0b in a pMSSM inspired model where m($\tilde{g}$) = 1400 GeV and m($\tilde{\chi}_{0}^{1}$) = 200 GeV.

More…

Version 5
Search for long-lived charginos based on a disappearing-track signature in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 06 (2018) 022, 2018.
Inspire Record 1641262 DOI 10.17182/hepdata.78375

This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns.

235 data tables match query

Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.

Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.

Pixel-tracklet $p_{T}$ spectrum of fake tracklet in electroweak channel in the low-Emiss region.

More…

Version 2
Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 052010, 2018.
Inspire Record 1644618 DOI 10.17182/hepdata.80609

A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015-2016, corresponding to 36.1 fb$^{-1}$ of integrated luminosity at $\sqrt{s}=13$ TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with non-universal Higgs boson masses.

6 data tables match query

<b>Upper Limits 8</b> Expected and observed 95% CL cross-section upper limits as a function of the universal gaugino mass m<sub>1/2</sub> for the NUHM2 model. The gray numbers indicate the values of the observed limit. The green and yellow bands around the expected limit indicate the &plusmn; 1&sigma; and &plusmn; 2&sigma; uncertainties, respectively. The expected signal production cross-sections as well as the associated uncertainty are indicated with the blue solid and dashed lines. The lower x-axis indicates the difference between the &chi;&#771;<sub>2</sub><sup>0</sup> and &chi;&#771;<sub>1</sub><sup>0</sup> masses for different values of m<sub>1/2</sub>. A fit of signals to the m<sub>&#8467;&#8467;</sub> spectrum is used to derive this limit.

<b>Upper Limits 8</b> Expected and observed 95% CL cross-section upper limits as a function of the universal gaugino mass m<sub>1/2</sub> for the NUHM2 model. The gray numbers indicate the values of the observed limit. The green and yellow bands around the expected limit indicate the &plusmn; 1&sigma; and &plusmn; 2&sigma; uncertainties, respectively. The expected signal production cross-sections as well as the associated uncertainty are indicated with the blue solid and dashed lines. The lower x-axis indicates the difference between the &chi;&#771;<sub>2</sub><sup>0</sup> and &chi;&#771;<sub>1</sub><sup>0</sup> masses for different values of m<sub>1/2</sub>. A fit of signals to the m<sub>&#8467;&#8467;</sub> spectrum is used to derive this limit.

<b>Upper Limits 9</b> Expected and observed 95% CL cross-section upper limits as a function of the universal gaugino mass m<sub>1/2</sub> for the NUHM2 model. The gray numbers indicate the values of the observed limit. The green and yellow bands around the expected limit indicate the &plusmn; 1&sigma; and &plusmn; 2&sigma; uncertainties, respectively. The expected signal production cross-sections as well as the associated uncertainty are indicated with the blue solid and dashed lines. The lower x-axis indicates the difference between the &chi;&#771;<sub>2</sub><sup>0</sup> and &chi;&#771;<sub>1</sub><sup>0</sup> masses for different values of m<sub>1/2</sub>. A fit of signals to the m<sub>&#8467;&#8467;</sub> spectrum is used to derive this limit.

More…

Version 6
Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb$^{-1}$ of $\sqrt{s}$=13 TeV $pp$ collision data with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 112001, 2018.
Inspire Record 1641270 DOI 10.17182/hepdata.77891

A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.

82 data tables match query

Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.

Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.

Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where gluinos have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.

More…