Measurement of the hadronic photon structure function F2(gamma) at LEP2.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 533 (2002) 207-222, 2002.
Inspire Record 583115 DOI 10.17182/hepdata.49744

The hadronic structure of the photon F2gamma is measured as a function of Bjorken x and of the photon virtuality Q2 using deep-inelastic scattering data taken by the OPAL detector at LEP at e+e- centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F2gamma are extended to an average Q2 of <Q2>=780GeV2 using data in the kinematic range 0.15 < x < 0.98. The Q2 evolution of F2gamma is studied for 12.1 < <Q2> < 780GeV2 using three ranges of x. As predicted by QCD, the data show positive scaling violations in F2gamma for the central x region 0.10-0.60. Several parameterisations of F2gamma are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data.

13 data tables match query

F2 and DSIG/DX for the EE sample in the high Q**2 region as a function of X.

Statistical correlations between the bins in the preceding table.

The measured value of F2 and DSIG/DX for the SW data sample in the Q**2 range 9 to 15 GeV**2.

More…

Measurement of the charm structure function F2(c)(gamma) of the photon at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 539 (2002) 13-24, 2002.
Inspire Record 587909 DOI 10.17182/hepdata.49793

The production of charm quarks is studied in deep-inelastic electron-photon scattering using data recorded by the OPAL detector at LEP at normal e+e- centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D0pi with the D0 observed in two decay modes with charged particle final states, Kpi and K3pi. The cross-section sigma(D*) for production of charged D* in the reaction e+e- -> e+e-D*X is measured in a restricted kinematical region using two bins in Bjorken x, 0.0014 < x < 0.1 and 0.1 < x < 0.87. From sigma(D*) the charm production cross-section sigma(e+e- -> e+e- ccbar X) and the charm structure function of the photon F 2,c are determined in the region 0.0014 < x < 0.87 and 5 < Q2 < 100 GeV2. For x > 0.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x < 0.1 the measured cross-section is 43.8 +- 14.3 +- 6.3 +- 2.8 pb with a next-to-leading order prediction of 17.0+2.9-2.3 p.b

3 data tables match query

The inclusive D* production cross section.

The inclusive charm quark pair cross section. The second DSYS error is due to extrapolation.

The measured structure function F2(C=CHARM). The second DSYS error is due to extrapolation.


Extraction of the gluon density of the proton at small x

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 345 (1995) 576-588, 1995.
Inspire Record 379633 DOI 10.17182/hepdata.45038

The gluon momentum density xg ( x , Q 2 ) of the proton was extracted at Q 2 = 20 GeV 2 for small values of x between 4 × 10 −4 and 10 −2 from the scaling violations of the proton structure function F 2 measured recently by ZEUS in deep inelastic neutral current ep scattering at HERA. The extraction was performed in two ways. Firstly, using a global NLO fit to the ZEUS data on F 2 at low x constrained by measurementsfrom NMC at larger x ; and secondly using published approximate methods for the solution of the GLAP QCD evolution equations. Consistent results are obtained. A substantial increase of the gluon density is found at small x in comparison with the NMC result obtained at larger values of x .

2 data tables match query

Values of F2 and slope of F2 obtained from fits to the ZEUS paper used in the extraction of the gluon momentum distributions.

Gluon momenta distribution at Q**2 = 20.


Measurement of the proton structure function F2 from the 1993 HERA data

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 65 (1995) 379-398, 1995.
Inspire Record 375999 DOI 10.17182/hepdata.45104

The ZEUS detector has been used to measure the proton structure functionF2. During 1993 HERA collided 26.7 GeV electrons on 820 GeV protons. The data sample corresponds to an integrated luminosity of 0.54 pb−1, representing a twenty fold increase in statistics compared to that of 1992. Results are presented for 7<Q2<104 GeV2 andx values as low as 3×10−4. The rapid rise inF2 asx decreases observed previously is now studied in greater detail and persists forQ2 values up to 500 GeV2.

13 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the F2 structure function in deep inelastic e+ p scattering using 1994 data from the ZEUS detector at HERA.

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 72 (1996) 399-424, 1996.
Inspire Record 420332 DOI 10.17182/hepdata.11638

We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.

84 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the diffractive structure function in deep elastic scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 68 (1995) 569-584, 1995.
Inspire Record 395199 DOI 10.17182/hepdata.44902

This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in $ep$ interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of $\xpom$, the momentum fraction lost by the proton, of $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and of $Q~2$. The $\xpom$ dependence is consistent with the form \xpoma where $a=1.30\pm0.08(stat)~{+0.08}_{-0.14}(sys)$ in all bins of $\beta$ and $Q~2$. In the measured $Q~2$ range, the diffractive structure function approximately scales with $Q~2$ at fixed $\beta$. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.

11 data tables match query

No description provided.

No description provided.

No description provided.

More…

A Precision Measurement of the Inclusive ep Scattering Cross Section at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Alimujiang, K. ; et al.
Eur.Phys.J.C 64 (2009) 561-587, 2009.
Inspire Record 818546 DOI 10.17182/hepdata.54873

A measurement of the inclusive deep-inelastic neutral current e+p scattering cross section is reported in the region of four-momentum transfer squared, 12&lt;=Q^2&lt;=150 GeV^2, and Bjorken x, 2x10^-4&lt;=x&lt;=0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E_e=27.6 GeV and E_p=920 GeV, respectively. The data are combined with previously published data, taken at E_p=820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data.

42 data tables match query

Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.

Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.

Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.

More…

Measurement of the Proton Structure Function ${F_2}$ at low ${x}$ and low ${Q~2}$ at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 69 (1996) 607-620, 1996.
Inspire Record 401305 DOI 10.17182/hepdata.44843

We report on a measurement of the proton structure function $F_2$ in the range $3.5\times10~{-5}\leq x \leq 4\times10~{-3}$ and 1.5 ${\rm GeV~2} \leq Q~2 \leq15$ ${\rm GeV~2}$ at the $ep$ collider HERA operating at a centre-of-mass energy of $\sqrt{s} = 300$ ${\rm GeV}$. The rise of $F_2$ with decreasing $x$ observed in the previous HERA measurements persists in this lower $x$ and $Q~2$ range. The $Q~2$ evolution of $F_2$, even at the lowest $Q~2$ and $x$ measured, is consistent with perturbative QCD.

13 data tables match query

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

More…

Measurement of the low-x behavior of the photon structure function F2(gamma).

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2000) 15-39, 2000.
Inspire Record 529899 DOI 10.17182/hepdata.49907

The photon structure function F2-gamma(x,Q**2) has been measured using data taken by the OPAL detector at centre-of-mass energies of 91Gev, 183Gev and 189Gev, in Q**2 ranges of 1.5 to 30.0 GeV**2 (LEP1), and 7.0 to 30.0 GeV**2 (LEP2), probing lower values of x than ever before. Since previous OPAL analyses, new Monte Carlo models and new methods, such as multi-variable unfolding, have been introduced, reducing significantly the model dependent systematic errors in the measurement.

12 data tables match query

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 1.9 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 3.7 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the FD for Q**2 = 8.9 GeV**2.

More…

Measurement of the Inclusive ep Scattering Cross Section at Low $Q^2$ and x at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 63 (2009) 625-678, 2009.
Inspire Record 817368 DOI 10.17182/hepdata.52425

A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV^2 < Q^2 < 12 GeV^2, and low Bjorken x, 5x10^-6 < x < 0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q^2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering.

39 data tables match query

Reduced cross section as measured in the SVX data sample for Q**2 = 0.20 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.

Reduced cross section as measured in the SVX data sample for Q**2 = 0.25 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.

Reduced cross section as measured in the SVX data sample for Q**2 = 0.35 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.

More…