We report on an analysis of the multiplicity distributions of charged particles produced ine+e− annihilation into hadrons at c.m. energies between 14 and 46.8 GeV. The charged multiplicity distributions of the whole event and single hemisphere deviate significantly from the Poisson distribution but follow approximate KNO scaling. We have also studied the multiplicity distributions in various rapidity intervals and found that they can be well described by the negative binomial distribution only for small central intervals. We have also analysed forward-backward multiplicity correlations for different energies and selections of particle charge and shown that they can be understood in terms of the fragmentation properties of the different quark flavours and by the production and decay of resonances. These correlations are well reproduced by the Lund string model.
RATIO of MULT/DISPERSION for the whole event to that for the single hemisphere data.
Complete event multiplicities.
Single hemisphere multiplicities.
This paper reports results of a search for production by radiative e+e− annihilation of particles that interact only weakly in matter. The search has been made in a data set corresponding to 110 pb−1 acquired with the ASP detector at the Stanford Linear Accelerator Center storage ring PEP (√s =29 GeV). No anomalous signal has been observed, which limits the number of generations of light neutrinos to be Nν<7.9 (at 90% C.L.). Limits are also placed on the masses of particles predicted to exist by models of supersymmetry.
No description provided.
The reaction e + e − → τ + τ − has been studied at centre of mass energies between 14.0 and 46.8 GeV with the CELLO detector at the PETRA e + e − collider. We present results for the cross section σ τ and the charge asymmetry A τ . The results are in good agreement with the standard model. We have also measured the topological decay rates BR 1 , BR 3 and BR 5 for the inclusive decay of the τ lepton into one, three and five charge particles. The results confirm and improve earlier CELLO measurements at other energies. We find for the combined values at all energies BR 1 = (84.9 ± 0.4 ± 0.3)%, BR 3 = (15.0 ± 0.4 ± 0.3)% and BR 5 = (0.16 ± 0.13 ± 0.04)%.
No description provided.
No description provided.
Corrected for radiative effects and background contributions.
High p ⊥ inclusive muon events produced in e + e − annihilations at √ s =29 GeV have been analyzed to obtain a measurement of the b b forward-backward charge asymmetry. The result A b =0.034±0.070±0.035 differs from the theoretical expectation (−0.16) unless substantial B 0 B 0 mixing is assumed.
No description provided.
Cross sections for charge changing and particle production are measured for 32 S collisions with Al, Fe, Cu, Ag and Pb targets at 200 GeV/ c . The measured difference between the two cross sections is discussed. Results are compared with data obtained with an 16 O beam.
Charge changing cross section.
Production cross section.
Fermilab experiment 711 has investigated proton-nucleus collisions in which two high-transverse-momentum hadrons are produced forming high-mass ++, +-, and -- charged states, using an 800-GeV/c proton beam on targets of beryllium, aluminum, iron, and tungsten. Our data cover the range in dihadron mass from 6 to 15 GeV/c2. We show here that the dependence of the cross section on atomic weight A can be parametrized as Aα where α=1.043±0.011(stat)±0.025 (syst), and is independent of the charge state of the dihadron system.
No description provided.
No description provided.
No description provided.
Using the ARGUS detector at thee+e− storage ring DORIS II, we have investigated inclusive production of π±,K±,Ks0 and\(\bar p\) in multihadron events at 9.98 GeV and in direct decays of the ϒ(1S) meson, i.e. from quark and gluon fragmentation. The most pronounced difference is the rate of baryon production. The Lund Monte Carlo program gives a reasonable qualitative description, although it cannot reproduce our data in detail.
No description provided.
No description provided.
No description provided.
Single charged-particle inclusive cross sections for photon, pion and kaon beams on hydrogen at the CERN-SPS are presented as functions ofpT andxF. Data cover the range 0.0<pT<5.0 GeV/c and 0.0<xF<1.0 at incident momenta from 70 to 170 GeV/c. The comparison between photon- and hadron-induced data indicates a relative excess of particles withpT>1.6 GeV/c for the photon-induced data. Using the hadron-induced data to estimate the hadronic behaviour of the photon, the difference distributions and ratios of cross sections are a measure of the contribution of the point-like photon interactions. The data are compared with QCD calculations and show broadly similar features.
No description provided.
No description provided.
No description provided.
This paper reports cross-section measurements for the ρ0 and K*(890) vector mesons produced in e+e− annihilation at s=29 GeV. The data, which were taken with the High Resolution Spectrometer operating at the SLAC colliding-beam facility PEP, correspond to an integrated luminosity of 291 pb−1. The measured multiplicities for fractional momentum x>0.05 are Nρ0=0.79±0.04 and NK*0(890)=0.53±0.04. The measured fragmentation functions agree well with the predictions of the Lund model and when extrapolated to threshold, the corresponding total multiplicities are Nρ0=0.90±0.05 and NK*0(890)=0.59±0.05.
No description provided.
No description provided.
No description provided.
We present results on a high statistics study of the proton structure functions F 2 ( x , Q 2 ) and R = σ L / σ T measured in deep inelastic scattering of muons on a hydrogen target. The analysis is based on 1.8 × 10 6 events after all cuts, recorded at beam energies of 100, 120, 200 and 280 GeV and covering a kinematic range 0.06 ⩽ x ⩽ 0.80 and 7 GeV 2 ⩽ Q 2 ⩽260 GeV 2 . At small x , we find R to be different from zero in agreement with predictions of perturbative QCD.
THE AVERAGE VALUES OF Q**2 AT EACH OF THE X VALUES LISTED IN THIS TABLE ARE 15,20,20,25,30,35,40,45,50,50.
R=SIG(L)/SIG(T) IS TAKEN TO BE ZERO.
R=SIG(L)/SIG(T) IS TAKEN TO BE ZERO.