The reaction π−+p→π−+p has been studied in the 15-in. bubble chamber at the Princeton-Pennsylvania Accelerator. The elastic scattering cross section was determined to be 8.5 ± 0.2 mb. The forward peak fits to an exponential in t with a slope of 8.1 ± 0.2 (GeV/c)−2. The forward differential cross section dσdΩ(0)=17.9±0.7 mb/sr. A fit of the center-of-mass angular distribution to Legendre polynomials needed terms up to the 12th order, corresponding to the highest nonzero partial wave of L=6.
No description provided.
FORWARD D(SIG)/DOMEGA IS 17.9 +- 0.7 MB/SR. SLOPE IS 8.1 +- 0.2 GEV**-2 (-T = 0.1 TO 0.4 GEV**2).
OTHER 2.27 GEV/C DATA ALSO QUOTED.
Differential cross-sections for proton-proton elastic scattering have been measured covering the angular range from 50° to 90° c.m. at twelve incident momenta from 1.3 to 3.0 GeV/c. The angular distributions are quite smooth, but there is evidence of structure in the energy dependence of fixed-angle cross-sections at |t| ∼ 1 (GeV)2.
No description provided.
No description provided.
No description provided.
In this paper we present the results of an analysis of strange-particle production in π−p collisions leading to two charged final particles and at least one strange neutral decay. The sample consists
No description provided.
The differential cross sections of the elastic backward scattering reaction π − n→n π − has been measured at 23 and 40 GeV/ c in the u -interval −0.07 ⩽ u ⩽ 0.01 (GeV/ c ) 2 .
No description provided.
No description provided.
A study is made of η 0 production in p p → 3π + 3π − π 0 (7500 events) at an incident momentum of 720 MeV/ c . The reaction is dominated by production of ω 0 (≈68 o/o). The η o production has been studied by means of two independent methods: the first, a study of correlations between the (4 π ) ± and (5 π ) 0 and the (3 π ) 0 systems, circumvents the problem of ω 0 reflections. The second attempts to isolate the η 0 4π channel by means of rigorous selections using the decay properties of η 0 and ω 0 . The results of the two methods are consistent and confirnm the production of σ +- , D 0 and E 0 with the decays ifD 0 → σ ± π ± → η 0 π + π ( su −), E 0 → σ ± π ∓ → η ( su 0) π + π − , E 0 → η 0 π + π − .
CORRECTED FOR UNOBSERVED ETA DECAYS AND I=0 ASSUMED FOR ETAPRIME, D(1285) AND E(1420) --> ETA PI0 PI0.
The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c
INTERPOLATED DATA.
INTERPOLATED DATA.
INTERPOLATED DATA.
The differential cross section for neutron-proton elastic scattering was measured in the diffraction region with incident neutron momenta between 5 and 30 GeV/ c . The experiment was an optical-spark-chamber-counter experiment conducted at the Brookhaven National Laboratory alternating gradient synchrotron. A well collimated neutron beam with a broad energy spectrum was incident on a liquid hydrogen target. The scattered neutrons were detected in a thick-plate spark-chamber array while the recoil protons were detected and momentum analyzed in a magnetic spectrometer with thin-foil spark chambers.
No description provided.
No description provided.
No description provided.
π − p → π 0 n and π − p → η n differential cross sections have been measured in nine nuclei ranging from hydrogen to lead at a 7.82 GeV/ c beam momentum and in a range of t going from 0 to −2 (GeV/ c ) 2 . The results can be understood in the framework of the Glauber theory which allows in addition a determination of the π 0 and η total cross sections on nucleons.
No description provided.
No description provided.
No description provided.
Photoabsorption cross sections in hydrogen and deuterium have been measured from 3.7 to 17.9 GeV. The energy dependences are similar to those of strong-interaction total cross sections, as expected from the vector-meson-dominance model. The magnitude of σT(γp) can be compared with data from γp→ρ0p to determine a γ−p coupling constant, γρ24π=0.37±0.03. This value disagrees with that obtained on the ρ mass shell, and hence there is only qualitative agreement with the vector-meson-dominance model.
Axis error includes +- 1/1 contribution (CORRECTION OF ACCEPTANCE, POSSIBLE LOSSES, ETC).
Experimental data exhibiting the separation of single and double quasi-elastic scattering in proton-deuteron collisions at 19.2 GeV/ c and for momentum transfers around 1 GeV/ c are presented. An analysis of the scattering cross section in terms of the multiple scattering theory is given. The possibilities for the deduction of proton-neutron differential cross sections particularly at large momentum transfers are pointed out.
No description provided.