Multiplicity ($N_{\rm ch}$) distributions and transverse momentum ($p_{\rm T}$) spectra of inclusive primary charged particles in the kinematic range of $|\eta| < 0.8$ and 0.15 GeV/$c$$< p_{T} <$ 10 GeV/$c$ are reported for pp, p-Pb, Xe-Xe and Pb-Pb collisions at centre-of-mass energies per nucleon pair ranging from $\sqrt{s_{\rm NN}} = 2.76$ TeV up to $13$ TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the $p_{\rm T}$ spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators.
Charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 2.76 TeV.
We present a study of the inclusive charged-particle transverse momentum ($p_{\rm T}$) spectra as a function of charged-particle multiplicity density at mid-pseudorapidity, ${\rm d}N_{\rm ch}/{\rm d}\eta$, in pp collisions at $\sqrt{s}$ = 5.02 and 13 TeV covering the kinematic range $|\eta|<0.8$ and $0.15
Transverse momentum spectra as a function of the event multiplicity for pp collisions at 13 TeV. Event multiplicity is estimated with the number of SPD tracklets. Uncorrelated systematic uncertainties are the multiplicity dependent systematic uncertainties.
Transverse momentum spectra as a function of the event multiplicity for pp collisions at 5.02 TeV. Event multiplicity is estimated with the number of SPD tracklets. Uncorrelated systematic uncertainties are the multiplicity dependent systematic uncertainties.
Transverse momentum spectra as a function of the event multiplicity for pp collisions at 13 TeV. Event multiplicity is estimated with the signal in the VZERO detector. Uncorrelated systematic uncertainties are the multiplicity dependent systematic uncertainties.
Transverse momentum ($p_{\rm T}$) spectra of charged particles at mid-pseudorapidity in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV measured with the ALICE apparatus at the Large Hadron Collider are reported. The kinematic range $0.15 < p_{\rm T} < 50$ GeV/$c$ and $|\eta| < 0.8$ is covered. Results are presented in nine classes of collision centrality in the 0-80% range. For comparison, a pp reference at the collision energy of $\sqrt{s}$ = 5.44 TeV is obtained by interpolating between existing \pp measurements at $\sqrt{s}$ = 5.02 and 7 TeV. The nuclear modification factors in central Xe-Xe collisions and Pb-Pb collisions at a similar center-of-mass energy of $\sqrt{s_{\rm NN}}$ = 5.02 TeV, and in addition at 2.76 TeV, at analogous ranges of charged particle multiplicity density $\left\langle\rm{d}N_{\rm ch}/\rm{d}\eta\right\rangle$ show a remarkable similarity at $p_{\rm T}> 10$ GeV/$c$. The comparison of the measured $R_{\rm AA}$ values in the two colliding systems could provide insight on the path length dependence of medium-induced parton energy loss. The centrality dependence of the ratio of the average transverse momentum $\left\langle p_{\rm{T}}\right\rangle$ in Xe-Xe collisions over Pb-Pb collision at $\sqrt{s}$ = 5.02 TeV is compared to hydrodynamical model calculations.
Transverse momentum spectra of charged particles in XeXe collisions in nine centrality classes.
Interpolated pp reference spectrum and invariant cross section.
Nuclear modification factor for XeXe. Additional systematic error: 0-5 pct data: +6.1 pct -6.1 pct 5-10 pct data: +6.6 pct -6.6 pct 10-20 pct data: +7.4 pct -7.4 pct 20-30 pct data: +9.8 pct -9.8 pct 30-40 pct data: +11.5 pct -11.5 pct 40-50 pct data: +12.9 pct -12.9 pct 50-60 pct data: +13.8 pct -13.8 pct 60-70 pct data: +14.0 pct -14.0 pct 70-80 pct data: +12.9 pct -12.9 pct
We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15
Transverse momentum spectra of charged particles in PbPb collisions in nine centrality classes.
Transverse momentum spectra of charged particles in PbPb collisions in nine centrality classes.
Transverse momentum spectra of charged particles in pPb collisions.
Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using $p+$Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of $\sqrt{s_{NN}}=5.02$ TeV. Charged particles are reconstructed over pseudorapidity $|\eta|<2.3$ and transverse momentum between $0.1$ GeV and $22$ GeV in a dataset corresponding to an integrated luminosity of $1$ $\mu b^{-1}$. The results are presented in the form of charged-particle nuclear modification factors, where the $p+$Pb charged-particle multiplicities are compared between central and peripheral $p+$Pb collisions as well as to charged-particle cross sections measured in pp collisions. The $p+$Pb collision centrality is characterized by the total transverse energy measured in $-4.9<\eta<-3.1$, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the $p+$Pb collision are carried out using the Glauber model and two Glauber-Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around $3$ GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.
Invariant differential $p_{T}$ spectra of charged particles which are produced in p+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shown in six $\eta$ intervals, for the 0--90% centrality interval. The individual spectra are scaled by constant factors (indicated in the legend) for visibility. The statistical uncertainties are indicated with vertical lines and the systematic uncertainties are indicated with boxes, but are generally much smaller than the size of the symbols.
Invariant differential $p_{T}$ spectra of charged particles which are produced in p+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shown in six y* intervals, for the 0--90% centrality interval. The individual spectra are scaled by constant factors (indicated in the legend) for visibility. The statistical uncertainties are indicated with vertical lines and the systematic uncertainties are indicated with boxes, but are generally much smaller than the size of the symbols.
The invariant differential y* spectra of charged particles produced in p+Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV are shown in five centrality intervals for $p_{T}>0.1$ GeV. The statistical uncertainties are indicated with vertical lines and the systematic uncertainties are indicated with boxes.
Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at sqrt(s) = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity, dN(charged)/d(eta), for |eta| < 0.5, of 5.78 +/- 0.01 (stat) +/- 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from sqrt(s) = 0.9 to 7 TeV is 66.1% +/- 1.0% (stat) +/- 4.2% (syst). The mean transverse momentum is measured to be 0.545 +/- 0.005 (stat) +/- 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies.
Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 0.1, 0.3, 0.5 and 0.7 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.
Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 0.9, 1.1, 1.3 and 1.5 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.
Measured differential yield of charged hadrons as a function oftransverse momentum for pseudorapidities 1.7, 1.9, 2.1 and 2.3 for centre-of-mass energy 7000 GeV.Errors are statistical and systematic added in quadrature.
Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.
Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 0.1, 0.3, 0.5 and 0.7 for centre-of-mass energy 900 GeV.
Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 0.9, 1.1, 1.3 and 1.5 for centre-of-mass energy 900 GeV.
Measured differential yield of charged hadrons as a function of transverse momentum for pseudorapidities 1.7, 1.9, 2.1 and 2.3 for centre-of-mass energy 900 GeV.