We have measured the polarizations of J/ψ and ψ(2S) mesons as functions of their transverse momentum pT when they are produced promptly in the rapidity range |y|<0.6 with pT≥5 GeV/c. The analysis is performed using a data sample with an integrated luminosity of about 800 pb−1 collected by the CDF II detector. For both vector mesons, we find that the polarizations become increasingly longitudinal as pT increases from 5 to 30 GeV/c. These results are compared to the predictions of nonrelativistic quantum chromodynamics and other contemporary models. The effective polarizations of J/ψ and ψ(2S) mesons from B-hadron decays are also reported.
Polarization parameter ALPHA for J/PSI production.
Polarization parameter ALPHA for PSI(2S) production.
We measure the ratio of cross section times branching fraction, $R_p \equiv \sigma_{\chi_{c2}} {\cal B}(\chi_{c2} \to J/\psi \gamma)/ \sigma_{\chi_{c1}} {\cal B}(\chi_{c1} \to J/\psi \gamma)$, in 1.1 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} =$ 1.96 TeV. This measurement covers the kinematic range $p_T(J/\psi)>4.0$ GeV/$c$, $|\eta(J/\psi)| < 1.0$, and $p_T(\gamma)>1.0$ GeV/$c$. For events due to prompt processes, we find $R_p = 0.395\pm0.016(stat.)\pm0.015(sys.)$. This result represents a significant improvement in precision over previous measurements of prompt $\chi_{c1,2}$ hadroproduction.
Ratios of cross section times branching fractions of the X_cJ states for the prompt events and B decay events Relative systematic uncertainty +-0.037% for SIG(Q=CHI/C2)/SIG(Q=CHI/C1). Relative systematic uncertainty +-0.038% for SIG(Q=B_CHI/C2)/SIG(Q=B_CHI/C1).
We report the first observation of the associated production of a W boson and a Z boson. This result is based on 1.1 fb-1 of integrated luminosity from ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We observe 16 WZ candidates passing our event selection with an expected background of 2.7 +/- 0.4 events. A fit to the missing transverse energy distribution indicates an excess of events compared to the background expectation corresponding to a significance equivalent to six standard deviations. The measured cross section is sigma(ppbar -> WZ) = 5.0^{+1.8}_{-1.6} pb, consistent with the standard model expectation.
Measured cross section.
We report on measurements of the inclusive jet production cross section as a function of the jet transverse momentum in pp-bar collisions at sqrt{s} = 1.96 TeV}, using the k_T algorithm and a data sample corresponding to 1.0 fb^-1 collected with the Collider Detector at Fermilab in Run II. The measurements are carried out in five different jet rapidity regions with |yjet| < 2.1 and transverse momentum in the range 54 < \ptjet < 700 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.
Measured inclusive jet differential cross section as a function of PT for the rapidity range -0.1 to 0.1 with the jet resolution parameter D = 0.7.
Measured inclusive jet differential cross section as a function of PT for the absoloute rapidity range 0.1 to 0.7 with the jet resolution parameter D = 0.7.
Measured inclusive jet differential cross section as a function of PT for the absolute rapidity range 0.7 to 1.1 with the jet resolution parameter D = 0.7.
We present a new measurement of the $B^+$ meson differential cross section $d\sigma/d p_T$ at $\sqrt{s}=1960$ GeV. The data correspond to an integrated luminosity of 739pb$^{-1}$ collected with the upgraded CDF detector (CDF II) at the Fermilab Tevatron collider. $B^+$ candidates are reconstructed through the decay $B^+ \to J/\psi K^+$, with $J/\psi \to \mu^+ \mu^-$. The integrated cross section for producing $B^+$ mesons with $p_T \geq 6$ GeV/c and $|y| \leq 1$ is measured to be $2.78 \pm 0.24 \mu$b
The differential cross section (nb/GeV/c) for B+ mesons as a function of pT.
The The B+ production cross section.
We present the first observation of exclusive $e^+e^-$ production in hadron-hadron collisions, using $p\bar{p}$ collision data at \mbox{$\sqrt{s}=1.96$ TeV} taken by the Run II Collider Detector at Fermilab, and corresponding to an integrated luminosity of \mbox{532 pb$^{-1}$}. We require the absence of any particle signatures in the detector except for an electron and a positron candidate, each with transverse energy {$E_T>5$ GeV} and pseudorapidity {$|\eta|<2$}. With these criteria, 16 events are observed compared to a background expectation of {$1.9\pm0.3$} events. These events are consistent in cross section and properties with the QED process \mbox{$p\bar{p} \to p + e^+e^- + \bar{p}$} through two-photon exchange. The measured cross section is \mbox{$1.6^{+0.5}_{-0.3}\mathrm{(stat)}\pm0.3\mathrm{(syst)}$ pb}. This agrees with the theoretical prediction of {$1.71 \pm 0.01$ pb}.
Exclusive cross section.
We determine rapidity asymmetry in the production of charged pions, protons and anti-protons for large transverse momentum (pT) for d+Au collisions at \sqrt s_NN = 200 GeV. The identified hadrons are measured in the rapidity regions |y| < 0.5 and 0.5 < |y| < 1.0 for the pT range 2.5 < pT < 10 GeV/c. We observe significant rapidity asymmetry for charged pion and proton+anti-proton production in both rapidity regions. The asymmetry is larger for 0.5 < |y| < 1.0 than for |y|< 0.5 and is almost independent of particle type. The measurements are compared to various model predictions employing multiple scattering, energy loss, nuclear shadowing, saturation effects, and recombination, and also to a phenomenological parton model. We find that asymmetries are sensitive to model parameters and show model-preference. The rapidity dependence of \pi^{-}/\pi^{+} and \bar{p}/p ratios in peripheral d+Au and forward neutron-tagged events are used to study the contributions of valence quarks and gluons to particle production at high pT. The results are compared to calculations based on NLO pQCD and other measurements of quark fragmentation functions.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
We present the first statistically meaningful results from two-K0s interferometry in heavy-ion collisions. A model that takes the effect of the strong interaction into account has been used to fit the measured correlation function. The effects of single and coupled channel were explored. At the mean transverse mass m_T = 1.07 GeV, we obtain the values R = 4.09 +/- 0.46 (stat.) +/- 0.31 (sys) fm and lambda = 0.92 +/- 0.23 (stat) +/- 0.13 (sys), where R and lambda are the invariant radius and chaoticity parameters respectively. The results are qualitatively consistent with m_T systematics established with pions in a scenario characterized by a strong collective flow.
K0s invariant mass distribution
Signal to (Signal + Background) ratio for K0s decay length > 6 cm.
Mean KT distribution of K0s pairs
We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at sqrt(s)=200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A_LL data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.
(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).
(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).
The longitudinal double-spin asymmetry ALL in p+p-> jet +X at sqrt(s) = 200 GeV versus jet pT. The uncertainties on the data points are statistical. The gray band indicates the systematic uncertainty from the beam polarization measurement, and the hatched band the total systematic uncertainty. The curves show predictions based on deep-inelastic scattering parametrizations of gluon polarization.
We present strange particle spectra and yields measured at mid-rapidity in $\sqrt{\text{s}}=200$ GeV proton-proton ($p+p$) collisions at RHIC. We find that the previously observed universal transverse mass ($\mathrm{m_{T}}\equiv\sqrt{\mathrm{p_{T}}^{2}+\mathrm{m}^{2}}$) scaling of hadron production in $p+p$ collisions seems to break down at higher \mt and that there is a difference in the shape of the \mt spectrum between baryons and mesons. We observe mid-rapidity anti-baryon to baryon ratios near unity for $\Lambda$ and $\Xi$ baryons and no dependence of the ratio on transverse momentum, indicating that our data do not yet reach the quark-jet dominated region. We show the dependence of the mean transverse momentum (\mpt) on measured charged particle multiplicity and on particle mass and infer that these trends are consistent with gluon-jet dominated particle production. The data are compared to previous measurements from CERN-SPS, ISR and FNAL experiments and to Leading Order (LO) and Next to Leading order (NLO) string fragmentation model predictions. We infer from these comparisons that the spectral shapes and particle yields from $p+p$ collisions at RHIC energies have large contributions from gluon jets rather than quark jets.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.