An analysis of the K 0 K 0 system at threshold produced in the final states p p → K S 0 K S 0 ( n π) at 700–760 MeV/ c , is presented. A simultaneous fit to the ππ phase shifts and inelasticities and to the K S 0 K S 0 effective-mass distributions using parametrizations which take into account the analytical and unitarity properties of the I = 0 S-wave amplitudes is performed. The behaviour of the eigenphases and the unphysical Riemann sheet structure for different solutions is studied.
No description provided.
FIT TO RESONANCE PRODUCTION CHANNELS IN <KS KS PI+ PI-> FINAL STATE.
FIT TO RESONANCE PRODUCTION CHANNELS IN <KS KS PI0> FINAL STATE.
None
INCLUDING SYSTEMATIC ERRORS.
STATISTICAL ERRORS ONLY.
STATISTICAL ERRORS ONLY.
The inclusive reactions h+p→ φ +X, (h= π ±, ,K ± ,p ± ), are studied for 0⪅ x F ⪅0.3 and p ⊥ ⩽ 1 GeV at 93 and and 63 GeV incident momentum. Differential cross sections d σ /d p ⊥ 2 and dσ /d x F are presented and are compared with predictions of the naive parton model.
No description provided.
No description provided.
No description provided.
Nearly 200 000 examples of the diffractive process K − p → K − π − π + p at 63 GeV have been obtained using a two magnet spectrometer equipped with Čerenkov counters for secondary particle identification. In addition some 2000 examples of the process K − p → ω K − p have been obtained. The K ππ data have been subjected to partial-wave analysis. The dominant J P = 1 + system couples to K ∗ π , in both S and D waves, ϱ K, κπ and ε K. The data confirm the existence of two J P = 1 + Q mesons and their masses, widths and branching ratios are given. The ifωK data show that the couplings of the Q mesons to ω K are approximately equal to the couplings to ϱ 0 K. The two 1 + nonets expected in the quark model are discussed in the light of this and other recent experiments. There is strong evidence for a broad J P = 0 − resonance at about 1.46 GeV. At higher masses, structure in the J P = 2 − partial waves establishes the existence of at least one J P = 2 − L meson.
JP=1+ S-WAVE PARTIAL WAVE INTENSITIES AND TOTAL INTENSITY FOR Q-REGION. THE <K* PI> INTENSITY IS DOMINATED BY QHIGH. THE <K RHO> AND <KAPPA PI> INTENSITIES ARE DOMINATED BY QLOW.
Production rates of multijet hadronic final states are studied ine+e− annihilation at 29 GeV center of mass energy. QCD shower model calculations with exact first order matrix element weighting at the first gluon vertex are capable of reproducing the observed multijet event rates over a large range of jet pair masses. The method used to reconstruct jets is well suited for directly comparing experimental jet rates with parton rates calculated in perturbative QCD. Evidence for the energy dependene of αs is obtained by comparing the observed production rates of 3-jet events with results of similar studies performed at higher center of mass energies.
Observed production rates relative to the total hadronic cross section.
Production rates corrected for fragmentation, initial state radiation and detector effects.
We report the results of first physics runs of the L3 detector at LEP. Based on 2538 hadron events, we determined the mass m z 0 and the width Γ z 0 of the intermediate vector boson Z 0 to be m z 0 =91.132±0.057 GeV (not including the 46 MeV LEP machine energy uncertainty) and Γ z 0 =2.588±0.137 GeV. We also determined Γ invisible =0.567±0.080 GeV, corresponding to 3.42±0.48 number of neutrino flavors. We also measured the muon pair cross section and determined the branching ratio Γ μμ = Γ h =0.056±0.006. The partial width of Z 0 →e + e − is Γ ee =88±9±7 MeV.
No description provided.
We have made a precise measurement of the cross section for e + e − →Z 0 →hadrons with the L3 detector at LEP, covering the s range from 88.28 to 95.04 GeV. From a fit to the Z 0 mass, total width, and the hadronic cross section to be M Z 0 =91.160 ± 0.024 (experiment) ±0.030(LEP) GeV, Γ Z 0 =2.539±0.054 GeV, and σ h ( M Z 0 )=29.5±0.7 nb. We also used the fit to the Z 0 peak cross section and the width todetermine Γ invisible =0.548±0.029 GeV, which corresponds to 3.29±0.17 species of light neutrinos. The possibility of four or more neutrino flavors is thus ruled out at the 4σ confidence level.
No description provided.
Total hadronic cross section.
None
No description provided.
No description provided.
No description provided.
We have searched for the annihilation of e+e− into the exclusive channels e±τ∓ and μ±τ∓ at √s =29 GeV, using 226 and 133 pb−1, respectively, of data taken with the Mark II detector at the SLAC storage ring PEP. The resulting candidate sample is compatible with the expected background from τ pair production. Our analysis yields 95%-C.L. cross-section limits of σeτ/σμμ<1.8×10−3 and σμτ/σμμ<6.1×10−3, where σμμ is the QED cross section for production of a lepton pair. This is the first high-Q2 test of lepton-flavor conservation involving τ leptons.
95 pct confidence upper limits.
A precise measurement of the ratio R of the total cross section e+e−→hadrons to the pointlike cross section e+e−→μ+μ− at a center-of-mass energy of 29.0 GeV is presented. The data were taken with the upgraded Mark II detector at the SLAC storage ring PEP. The result is R=3.92±0.05±0.09. The luminosity has been determined with three independent luminosity monitors measuring Bhabha scattering at different angular intervals. Recent calculations of higher-order QED radiative corrections are used to estimate the systematic error due to missing higher-order radiative corrections in the Monte Carlo event generators.
No description provided.