Two searches for supersymmetric particles in final states containing a same-flavour opposite-sign lepton pair, jets and large missing transverse momentum are presented. The proton-proton collision data used in these searches were collected at a centre-of-mass energy $\sqrt{s}=8$ TeV by the ATLAS detector at the Large Hadron Collider and corresponds to an integrated luminosity of 20.3 fb$^{-1}$. Two leptonic production mechanisms are considered: decays of squarks and gluinos with $Z$ bosons in the final state, resulting in a peak in the dilepton invariant mass distribution around the $Z$-boson mass; and decays of neutralinos (e.g. $\tilde{\chi}^{0}_{2} \rightarrow \ell^{+}\ell^{-}\tilde{\chi}^{0}_{1}$), resulting in a kinematic endpoint in the dilepton invariant mass distribution. For the former, an excess of events above the expected Standard Model background is observed, with a significance of 3 standard deviations. In the latter case, the data are well-described by the expected Standard Model background. The results from each channel are interpreted in the context of several supersymmetric models involving the production of squarks and gluinos.
The observed and expected dielectron invariant mass distribution in SR-Z. The negigible estimated contribution from Z+jets is omitted in these distributions.
The observed and expected dimuon invariant mass distribution in SR-Z. The negigible estimated contribution from Z+jets is omitted in these distributions.
The observed and expected $E_T^{miss}$ distribution in the dielectron SR-Z. The negigible estimated contribution from Z+jets is omitted in these distributions. The last bin contains the overflow.
Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 $fb^{-1}$ of proton--proton collisions delivered by the Large Hadron Collider at $\sqrt{s}$ = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a $Z$ boson. No significant deviations are observed in data from Standard Model predictions and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 GeV and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios.
The ETmiss distribution in VR0Z.
The effective mass distribution in VR0Z.
The ETmiss distribution in VR2Z.
We present the first measurement of dijet angular distributions in ppbar collisions at sqrt{s}=1.96TeV at the Fermilab Tevatron Collider. The measurement is based on a dataset corresponding to an integrated luminosity of up to 0.7fb-1 collected with the D0 detector. Dijet angular distributions have been measured over a range of dijet masses, from 0.25TeV to above 1.1TeV. The data are in good agreement with the predictions of perturbative QCD and are used to constrain new physics models including quark compositeness, large extra dimensions, and TeV-1 scale extra dimensions. For all models we set the most stringent direct limits to date.
Normalized differential distribution in CHI(dijet) for two-jet mass 250 to 300 GeV and the non perturbative correction factor.
Normalized differential distribution in CHI(dijet) for two-jet mass 300 to 400 GeV and the non perturbative correction factor.
Normalized differential distribution in CHI(dijet) for two-jet mass 400 to 500 GeV and the non perturbative correction factor.
We report on a measurement of the inclusive jet cross section in $p \bar{p}$ collisions at a center-of-mass energy $\sqrt s=$1.96 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider corresponding to an integrated luminosity of 0.70 fb$^{-1}$. The data cover jet transverse momenta from 50 GeV to 600 GeV and jet rapidities in the range -2.4 to 2.4. Detailed studies of correlations between systematic uncertainties in transverse momentum and rapidity are presented, and the cross section measurements are found to be in good agreement with next-to-leading order QCD calculations.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.0 to 0.4 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.4 to 0.8 for cone radius R = 0.7.
Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.8 to 1.2 for cone radius R = 0.7.