Differential cross-section measurements of the production of four charged leptons in association with two jets using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 01 (2024) 004, 2024.
Inspire Record 2690799 DOI 10.17182/hepdata.144086

Differential cross-sections are measured for the production of four charged leptons in association with two jets. These measurements are sensitive to final states in which the jets are produced via the strong interaction as well as to the purely-electroweak vector boson scattering process. The analysis is performed using proton-proton collision data collected by ATLAS at $\sqrt{s}=13$ TeV and with an integrated luminosity of 140 fb$^{-1}$. The data are corrected for the effects of detector inefficiency and resolution and are compared to state-of-the-art Monte Carlo event generator predictions. The differential cross-sections are used to search for anomalous weak-boson self-interactions that are induced by dimension-six and dimension-eight operators in Standard Model effective field theory.

28 data tables

Predicted and observed yields as a function of $m_{jj}$ in the VBS-Enhanced region. Overflow events are included in the last bin of the distribution.

Predicted and observed yields as a function of $m_{jj}$ in the VBS-Suppressed region. Overflow events are included in the last bin of the distribution.

Predicted and observed yields as a function of $m_{4\ell}$ in the VBS-Enhanced region. Overflow events are included in the last bin of the distribution.

More…

Version 2
Probing small Bjorken-$x$ nuclear gluonic structure via coherent J/$\psi$ photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 262301, 2023.
Inspire Record 2648536 DOI 10.17182/hepdata.138867

Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/$\psi$ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W$^\text{Pb}_{\gamma\text{N}}$), over a wide range of 40 $\lt$ W$^\text{Pb}_{\gamma\text{N}}$$\lt$ 400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb$^{-1}$. The cross section is observed to rise rapidly at low W$^\text{Pb}_{\gamma\text{N}}$, and plateau above W$^\text{Pb}_{\gamma\text{N}}$$\approx$ 40 GeV, up to 400 GeV, a new regime of small Bjorken-$x$ ($\approx$ 6 $\times$ 10$^{-5}$) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.

16 data tables

The differential coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of rapidity, in different neutron multiplicity classes: 0n0n, 0nXn, XnXn , and AnAn.

The differential coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of rapidity, in different neutron multiplicity classes: 0n0n, 0nXn, XnXn , and AnAn.

The total coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of photon-nuclear center-of-mass energy per nucleon $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$, measured in PbPb ultra-peripheral collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. The $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$ values used correspond to the center of each rapidity range. The theoretical uncertainties is due to the uncertainties in the photon flux.

More…

Measurement of differential cross sections for the production of a Z boson in association with jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 108 (2023) 052004, 2023.
Inspire Record 2078067 DOI 10.17182/hepdata.115655

A measurement is presented of the production of Z bosons that decay into two electrons or muons in association with jets, in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded by the CMS Collaboration at the LHC with an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are measured as a function of the transverse momentum ($p_\mathrm{T}$) of the Z boson and the transverse momentum and rapidities of the five jets with largest $p_\mathrm{T}$. The jet multiplicity distribution is measured for up to eight jets. The hadronic activity in the events is estimated using the scalar sum of the $p_\mathrm{T}$ of all the jets. All measurements are unfolded to the stable particle-level and compared with predictions from various Monte Carlo event generators, as well as with expectations at leading and next-to-leading orders in perturbative quantum chromodynamics.

70 data tables

Measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$.

Measured cross section as a function of the rapidity absolute value of the first jet, $|y(\text{j}_1)|$, and breakdown of the relative uncertainty.

More…

Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

27 data tables

Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.

Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

More…

Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Measurements of the W boson rapidity, helicity, double-differential cross sections, and charge asymmetry in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 092012, 2020.
Inspire Record 1810913 DOI 10.17182/hepdata.94180

The differential cross section and charge asymmetry for inclusive W boson production at $\sqrt{s} =$ 13 TeV is measured for the two transverse polarization states as a function of the W boson absolute rapidity. The measurement uses events in which a W boson decays to a neutrino and either a muon or an electron. The data sample of proton-proton collisions recorded with the CMS detector at the LHC in 2016 corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross section and its value normalized to the total inclusive W boson production cross section are measured over the rapidity range $|y_\mathrm{W}|$ $\lt$ 2.5. In addition to the total fiducial cross section, the W boson double-differential cross section, d$^2\sigma$/d$p^\ell_\mathrm{T}$d$|\eta|$ and the charge asymmetry are measured as functions of the charged lepton transverse momentum and pseudorapidity. The precision of these measurements is used to constrain the parton distribution functions of the proton using the next-to-leading order NNPDF3.0 set.

67 data tables

Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel

Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel

Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel

More…

Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
JHEP 07 (2020) 178, 2020.
Inspire Record 1792394 DOI 10.17182/hepdata.94264

We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.

47 data tables

Differential fiducial cross section for CEP of $\pi^+\pi^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $\pi^+$, $\pi^-$ - $p_{\mathrm{T}} > 0.2~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $K^+K^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $K^+$, $K^-$ - $p_{\mathrm{T}} > 0.3~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(K^+), p_{\mathrm{T}}(K^-)) < 0.7~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $p\bar{p}$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $p$, $\bar{p}$ - $p_{\mathrm{T}} > 0.4~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(p), p_{\mathrm{T}}(\bar{p})) < 1.1~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

More…

Measurements of the production cross-section for a $Z$ boson in association with $b$-jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 07 (2020) 044, 2020.
Inspire Record 1788444 DOI 10.17182/hepdata.94219

This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 35.6 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one or at least two $b$-jets with transverse momentum $p_\textrm{T}>$ 20 GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on leading-order (LO) or next-to-leading-order (NLO) matrix elements interfaced with a parton-shower simulation and testing different flavour schemes for the choice of initial-state partons are compared with measured cross-sections. The 5-flavour number scheme predictions at NLO accuracy agree better with data than 4-flavour number scheme ones. The 4-flavour number scheme predictions underestimate data in events with at least one b-jet.

15 data tables

Measured fiducial cross sections for events with $Z(\rightarrow ll)\ge+1$ b-jets or with $Z(\rightarrow ll)\ge+2$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

Differential fiducial cross section of the Z boson $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

Differential fiducial cross section of the leading b-jet $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

More…

Study of central exclusive $\pi^+\pi^-$ production in proton-proton collisions at $\sqrt{s} =$ 5.02 and 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 718, 2020.
Inspire Record 1784063 DOI 10.17182/hepdata.100551

Central exclusive and semiexclusive production of $\pi^+\pi^-$ pairs is measured with the CMS detector in proton-proton collisions at the LHC at center-of-mass energies of 5.02 and 13 TeV. The theoretical description of these nonperturbative processes, which have not yet been measured in detail at the LHC, poses a significant challenge to models. The two pions are measured and identified in the CMS silicon tracker based on specific energy loss, whereas the absence of other particles is ensured by calorimeter information. The total and differential cross sections of exclusive and semiexclusive central $\pi^+\pi^-$ production are measured as functions of invariant mass, transverse momentum, and rapidity of the $\pi^+\pi^-$ system in the fiducial region defined as transverse momentum $p_\mathrm{T}(\pi)$ $>$ 0.2 GeV and pseudorapidity $|\eta(\pi)|$ $<$ 2.4. The production cross sections for the four resonant channels f$_0(500)$, $\rho^0(770)$, f$_0(980)$, and f$_2(1270)$ are extracted using a simple model. These results represent the first measurement of this process at the LHC collision energies of 5.02 and 13 TeV.

6 data tables

Differential cross section as a function of the invariant mass of the pion pair at 5.02 TeV, compared with generator-level simulations.

Differential cross section as a function of the invariant mass of the pion pair at 13 TeV, compared with generator-level simulations.

Differential cross section as a function of the transverse momentum of the pion pair at 5.02 TeV, compared with generator-level simulations.

More…

Study of $\Upsilon$ production in $p$Pb collisions at $\sqrt{s_{NN}}=8.16$ TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 11 (2018) 194, 2018.
Inspire Record 1699106 DOI 10.17182/hepdata.93070

The production of $\Upsilon (nS)$ mesons ($n=1,2,3$) in $p$Pb and Pb$p$ collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{NN}}=8.16$ TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb$^{-1}$. The $\Upsilon (nS)$ mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the $\Upsilon (1S)$ and $\Upsilon (2S)$ states, their forward-to-backward ratios and nuclear modification factors, performed as a function of the transverse momentum $p_{\mathrm{T}}$ and rapidity in the nucleon-nucleon centre-of-mass frame $y^*$ of the $\Upsilon (nS)$ states, in the kinematic range $p_{\rm{T}}<25$ GeV/$c$ and $1.5<y^*<4.0$ ($-5.0<y^*<-2.5$) for $p$Pb (Pb$p$) collisions. In addition, production cross-sections for $\Upsilon (3S)$ are measured integrated over phase space and the production ratios between all three $\Upsilon (nS)$ states are determined. The measurements are compared to theoretical predictions and suppressions for quarkonium in $p$Pb collisions are observed.

17 data tables

$\Upsilon(1S)$ production cross-section in $p$Pb, as a function of $p_{T}$ and $y*$. The uncertainty is the sum in quadrature of the statistical and systematic components.

$\Upsilon(1S)$ production cross-section in Pb$p$, as a function of $p_{T}$ and $y^*$. The uncertainty is the sum in quadrature of the statistical and systematic components.

$\Upsilon(1S)$ production cross-section in $p$Pb and Pb$p$, as a function of $p_{T}$. The uncertainty is the sum in quadrature of the statistical and systematic components.

More…

Measurement of differential cross sections for Z boson production in association with jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 965, 2018.
Inspire Record 1667854 DOI 10.17182/hepdata.91404

The production of a Z boson, decaying to two charged leptons, in association with jets in proton-proton collisions at a centre-of-mass energy of 13 TeV is measured. Data recorded with the CMS detector at the LHC are used that correspond to an integrated luminosity of 2.19 fb$^{-1}$. The cross section is measured as a function of the jet multiplicity and its dependence on the transverse momentum of the Z boson, the jet kinematic variables (transverse momentum and rapidity), the scalar sum of the jet momenta, which quantifies the hadronic activity, and the balance in transverse momentum between the reconstructed jet recoil and the Z boson. The measurements are compared with predictions from four different calculations. The first two merge matrix elements with different parton multiplicities in the final state and parton showering, one of which includes one-loop corrections. The third is a fixed-order calculation with next-to-next-to-leading order accuracy for the process with a Z boson and one parton in the final state. The fourth combines the fully differential next-to-next-to-leading order calculation with next-to-next-to-leading logarithm resummation and parton showering.

36 data tables

Measured cross section for Z+jets as a function of the exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the measured cross section for Z+jets as a function of the exclusive jet multiplicity, $N_{\text{jets}}$.

Measured cross section for Z+jets as a function of inclusive jet multiplicity, $N_{\text{jets}}^{\text{min}}$, and breakdown of the relative uncertainty.

More…

Measurements of Higgs boson properties in the diphoton decay channel with 36 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 98 (2018) 052005, 2018.
Inspire Record 1654582 DOI 10.17182/hepdata.83417

Properties of the Higgs boson are measured in the two-photon final state using 36.1 fb$^{-1}$ of proton-proton collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the Large Hadron Collider. Cross-section measurements for the production of a Higgs boson through gluon-gluon fusion, vector-boson fusion, and in association with a vector bosonor a top-quark pair are reported. The signal strength, defined as the ratio of the observed to the expected signal yield, is measured for each of these production processes as well as inclusively. The global signal strength measurement of $0.99 \pm 0.14$ improves on the precision of the ATLAS measurement at $\sqrt{s} = 7$ and 8 TeV by a factor of two. Measurements of gluon-gluon fusion and vector-boson fusion productions yield signal strengths compatible with the Standard Model prediction. Measurements of simplified template cross sections, designed to quantify the different Higgs boson production processes in specific regions of phase space, are reported. The cross section for the production of the Higgs boson decaying to two isolated photons in a fiducial region closely matching the experimental selection of the photons is measured to be $55 \pm 10$ fb, which is in good agreement with the Standard Model prediction of $64 \pm 2$ fb. Furthermore, cross sections in fiducial regions enriched in Higgs boson production in vector-boson fusion or in association with large missing transverse momentum, leptons or top-quark pairs are reported. Differential and double-differential measurements are performed for several variables related to the diphoton kinematics as well as the kinematics and multiplicity of the jets produced in association with a Higgs boson. No significant deviations from a wide array of Standard Model predictions are observed.

39 data tables

Measured differential cross section with associated uncertainties as a function of PT(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of YRAP(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of PTTHRUST(2GAMMA). Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Measurement of the differential cross sections for the associated production of a W boson and jets in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 072005, 2017.
Inspire Record 1610623 DOI 10.17182/hepdata.79859

A measurement of the differential cross sections for a W boson produced in association with jets in the muon decay channel is presented. The measurement is based on 13 TeV proton-proton collision data corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS detector at the LHC. The cross sections are reported as functions of jet multiplicity, jet transverse momentum pT, jet rapidity, the scalar pT sum of the jets, and angular correlations between the muon and the jet for different jet multiplicities. The measured cross sections are in agreement with predictions that include multileg leading-order (LO) and next-to-LO matrix element calculations interfaced with parton showers, as well as a next-to-next-to-LO calculation for the W boson and one jet production.

19 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.

The differential cross section measurement as a function of the transverse momentum of the first leading jet.

More…

Version 2
Fiducial, total and differential cross-section measurements of $t$-channel single top-quark production in $pp$ collisions at 8 TeV using data collected by the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 531, 2017.
Inspire Record 1512776 DOI 10.17182/hepdata.82544

Detailed measurements of $t$-channel single top-quark production are presented. They use 20.2 fb$^{-1}$ of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8 % (top quark) and 7.8 % (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{\mathrm{tot}}(tq) = 56.7^{+4.3}_{-3.8}\;$pb for top-quark production and $\sigma_{\mathrm{tot}}(\bar{t}q) = 32.9^{+3.0}_{-2.7}\;$pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t=1.72 \pm 0.09$, with an improved relative precision of 4.9 % since several systematic uncertainties cancel in the ratio. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the $t$-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.

108 data tables

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Definition of the fiducial phase space.

More…

Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

78 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 7.

More…

Measurement of the forward Z boson production cross-section in pp collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 09 (2016) 136, 2016.
Inspire Record 1477581 DOI 10.17182/hepdata.110162

A measurement of the production cross-section of Z bosons in pp collisions at $\sqrt{s} = 13$ TeV is presented using dimuon and dielectron final states in LHCb data. The cross-section is measured for leptons with pseudorapidities in the range $2.0 < \eta < 4.5$, transverse momenta $p_\text{T} > 20$ GeV and dilepton invariant mass in the range $60<m(\ell\ell)<120$ GeV. The integrated cross-section from averaging the two final states is \begin{equation*}\sigma_{\text{Z}}^{\ell\ell} = 194.3 \pm 0.9 \pm 3.3 \pm 7.6\text{ pb,}\end{equation*} where the first uncertainty is statistical, the second is due to systematic effects, and the third is due to the luminosity determination. In addition, differential cross-sections are measured as functions of the Z boson rapidity, transverse momentum and the angular variable $\phi^*_\eta$.

15 data tables

The FSR correction applied as a function of the boson rapidity for muons.

The FSR correction applied as a function of the boson rapidity for electrons.

The FSR correction applied as a function of $\phi ^ * _ \eta$ for muons.

More…

Measurement of the integrated and differential t-tbar production cross sections for high-pt top quarks in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 072002, 2016.
Inspire Record 1454211 DOI 10.17182/hepdata.78540

The cross section for pair production of top quarks (t-tbar) with high transverse momenta is measured in pp collisions, collected with the CMS detector at the LHC with sqrt(s) = 8 TeV in data corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed using lepton+jets events, where one top quark decays semileptonically, while the second top quark decays to a hadronic final state. The hadronic decay is reconstructed as a single, large-radius jet, and identified as a top quark candidate using jet substructure techniques. The integrated cross section and the differential cross sections as a function of top quark pt and rapidity are measured at particle level within a fiducial region related to the detector-level requirements and at parton level. The particle-level integrated cross section is found to be sigma[t-tbar] = 0.499 +/- 0.035 (stat+syst) +/- 0.095 (theory) +/- 0.013 (lumi) pb for top quark pt > 400 GeV. The parton-level measurement is sigma[t-tbar] = 1.44 +/- 0.10 (stat+syst) +/- 0.29 (theory) +/- 0.04 (lumi) pb. The integrated and differential cross section results are compared to predictions from several event generators.

3 data tables

The measurements of the integrated cross sections for $p_T^t > 400$ GeV.

Differential $t\bar{t}$ cross section in bins of $p_T$ for the $t$ jet at the particle level and the top quark at parton level.

Differential $t\bar{t}$ cross section in bins of $y$ for the $t$ jet at the particle level and the top quark at parton level.


Study of Z boson production in pPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 759 (2016) 36-57, 2016.
Inspire Record 1410832 DOI 10.17182/hepdata.71358

The production of Z bosons in pPb collisions at sqrt(s[NN]) = 5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions.

3 data tables

Differential cross section of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.

Forward-backward asymmetry (AFB) distribution of the Z bosons in pPb collisions as a function of rapidity in the fiducial region for the combined leptonic decay channel.

Differential cross section of the Z bosons in pPb collisions as a function of transverse momentum in the fiducial region for the combined leptonic decay channel.


Measurement of forward $W$ and $Z$ boson production in $pp$ collisions at $\sqrt{s} = 8\mathrm{\,Te\kern -0.1em V}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 01 (2016) 155, 2016.
Inspire Record 1406555 DOI 10.17182/hepdata.71419

Measurements are presented of electroweak boson production using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 8\mathrm{\,Te\kern -0.1em V}$. The analysis is based on an integrated luminosity of $2.0\mathrm{\,fb}^{-1}$ recorded with the LHCb detector. The bosons are identified in the $W\rightarrow\mu\nu$ and $Z\rightarrow\mu^{+}\mu^{-}$ decay channels. The cross-sections are measured for muons in the pseudorapidity range $2.0 < \eta < 4.5$, with transverse momenta $p_{\rm T} > 20{\mathrm{\,Ge\kern -0.1em V\!/}c}$ and, in the case of the $Z$ boson, a dimuon mass within $60 < M_{\mu^{+}\mu^{-}} < 120{\mathrm{\,Ge\kern -0.1em V\!/}c^{2}}$. The results are \begin{align*} \sigma_{W^{+}\rightarrow\mu^{+}\nu} &= 1093.6 \pm 2.1 \pm 7.2 \pm 10.9 \pm 12.7{\rm \,pb} \, , \sigma_{W^{-}\rightarrow\mu^{-}\bar{\nu}} &= \phantom{0}818.4 \pm 1.9 \pm 5.0 \pm \phantom{0}7.0 \pm \phantom{0}9.5{\rm \,pb} \, , \sigma_{Z\rightarrow\mu^{+}\mu^{-}} &= \phantom{00}95.0 \pm 0.3 \pm 0.7 \pm \phantom{0}1.1 \pm \phantom{0}1.1{\rm \,pb} \, , \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. The evolution of the $W$ and $Z$ boson cross-sections with centre-of-mass energy is studied using previously reported measurements with $1.0\mathrm{\,fb}^{-1}$ of data at $7\mathrm{\,Te\kern -0.1em V}$. Differential distributions are also presented. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.

23 data tables

Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic, beam and luminosity.

Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.

Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.

More…

Dijet production in $\sqrt{s}=7$ TeV $pp$ collisions with large rapidity gaps at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 754 (2016) 214-234, 2016.
Inspire Record 1402356 DOI 10.17182/hepdata.70762

A $6.8 \ {\rm nb^{-1}}$ sample of $pp$ collision data collected under low-luminosity conditions at $\sqrt{s} = 7$ TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with $p_\mathrm{T} > 20$ GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in $\Delta\eta^F$, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, $\tilde{\xi}$, of the fractional momentum loss of the proton assuming single diffractive dissociation ($pp \rightarrow pX$). Model comparisons indicate a dominant non-diffractive contribution up to moderately large $\Delta\eta^F$ and small $\tilde{\xi}$, with a diffractive contribution which is significant at the highest $\Delta\eta^F$ and the lowest $\tilde{\xi}$. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions.

6 data tables

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.4.

The cross section differential in the fraction of the proton four-momentum carried by the Pomeron, LOG10(C=XI), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

More…

Measurement of an excess in the yield of J/$\psi$ at very low $p_{\rm T}$ in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 222301, 2016.
Inspire Record 1395296 DOI 10.17182/hepdata.72639

We report on the first measurement of an excess in the yield of J/$\psi$ at very low transverse momentum ($p_{\rm T}< 0.3$ GeV/$c$) in peripheral hadronic Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, performed by ALICE at the CERN LHC. Remarkably, the measured nuclear modification factor of J/$\psi$ in the rapidity range $2.5<y<4$ reaches about 7 (2) in the $p_{\rm T}$ range 0-0.3 GeV/$c$ in the 70-90% (50-70%) centrality class. The J/$\psi$ production cross section associated with the observed excess is obtained under the hypothesis that coherent photoproduction of J/$\psi$ is the underlying physics mechanism. If confirmed, the observation of J/$\psi$ coherent photoproduction in Pb-Pb collisions at impact parameters smaller than twice the nuclear radius opens new theoretical and experimental challenges and opportunities. In particular, coherent photoproduction accompanying hadronic collisions may provide insight into the dynamics of photoproduction and nuclear reactions, as well as become a novel probe of the Quark-Gluon Plasma.

4 data tables

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

J/$\psi$ nuclear modification factor $R_{\rm AA}$ as a function of the mean number of participant nucleons $\langle N_{\rm{part}}\rangle$, the first error is statistical, the second error is systematic uncorrelated in $p_{\rm T}$ and centrality, the third error is systematic correlated in $p_{\rm T}$ but not in centrality, the fourth error is systematic correlated in centrality but not in $p_{\rm T}$ and the fifth error is systematic correlated in $p_{\rm T}$ and centrality.

More…

Inclusive quarkonium production at forward rapidity in pp collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 76 (2016) 184, 2016.
Inspire Record 1395099 DOI 10.17182/hepdata.72936

We report on the inclusive production cross sections of J/$\psi$, $\psi$(2S), $\Upsilon$(1S), $\Upsilon$(2S) and $\Upsilon$(3S), measured at forward rapidity with the ALICE detector in pp collisions at a center-of-mass energy $\sqrt{s}=8$ TeV. The analysis is based on data collected at the LHC and corresponds to an integrated luminosity of 1.28 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel. The differential production cross sections are measured as a function of the transverse momentum $p_{\rm T}$ and rapidity $y$, over the $p_{\rm T}$ ranges $0<p_{\rm T}<20$ GeV/$c$ for J/$\psi$, $0<p_{\rm T}<12$ GeV/$c$ for all other resonances, and for $2.5<y<4$. The cross sections, integrated over $p_{\rm T}$ and $y$, and assuming unpolarized quarkonia, are $\sigma_{{\rm J}/\psi} = 8.98\pm0.04\pm0.82$ $\mu$b, $\sigma_{\psi{\rm (2S)}} = 1.23\pm0.08\pm0.22$ $\mu$b, $\sigma_{\Upsilon{\rm(1S)}} = 71\pm6\pm7$ nb, $\sigma_{\Upsilon{\rm(2S)}} = 26\pm5\pm4$ nb and $\sigma_{\Upsilon{\rm(3S)}} = 9\pm4\pm1$ nb, where the first uncertainty is statistical and the second one is systematic. These values agree, within at most $1.4\sigma$, with measurements performed by the LHCb collaboration in the same rapidity range.

17 data tables

Differential production cross sections of J/$\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of J/$\psi$ as a function of rapidity.

integrated production cross section of J/$\psi$.

More…

Measurement of four-jet differential cross sections in $\sqrt{s}=8$ TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 12 (2015) 105, 2015.
Inspire Record 1394679 DOI 10.17182/hepdata.18620

Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-$k_{t}$ R=0.4 jets with the largest transverse momentum ($p_{T}$) within the rapidity range $|y|<2.8$ are well separated ($dR^{\rm min}_{4j}>0.65$), all have $p_{T}>64$ GeV, and include at least one jet with $p_{T} >100$ GeV. The dataset corresponds to an integrated luminosity of 20.3 $fb^{-1}$. The cross sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.

46 data tables

Measured differential four-jet cross section for R=0.4 jets, in bins of pT1, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All uncertainties are given in %. The first uncertainty quoted is due to the number of data events. DSYS:mcstat is the statistical uncertainty due to the number of MC simulation events. The other columns, denoted with DSYS, correspond to the experimental systematic uncertainties arising from JES, JER, unfolding and luminosity, respectively.

Measured differential four-jet cross section for R=0.4 jets, in bins of pT2, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All other details are as for pT1.

Measured differential four-jet cross section for R=0.4 jets, in bins of pT3, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All other details are as for pT1.

More…

Forward production of $\Upsilon$ mesons in $pp$ collisions at $\sqrt{s}=7$ and 8TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 11 (2015) 103, 2015.
Inspire Record 1392456 DOI 10.17182/hepdata.249

The production of $\Upsilon$ mesons in $pp$ collisions at $\sqrt=7$ and $8\,\mathrm{TeV}$ is studied with the LHCb detector using data samples corresponding to an integrated luminosity of $1\,\mathrm{fb}^{-1}$ and $2\,\mathrm{fb}^{-1}$ respectively. The production cross-sections and ratios of cross-sections are measured as functions of the meson transverse momentum $p_T$ and rapidity $y$, for $p_T<30\,\mathrm{GeV}/c$} and $2.0<y<4.5$.

22 data tables

Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.

Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.

Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)].

More…

Version 2
Measurement of forward $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=13$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 10 (2015) 172, 2015.
Inspire Record 1391511 DOI 10.17182/hepdata.70048

The production of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV is studied with the \lhcb detector. Cross-section measurements are performed as a function of the transverse momentum $p_\mathrm{T}$ and the rapidity $y$ of the $J/\psi$ meson in the region $p_\mathrm{T}<14\mathrm{GeV}/c$ and $2.0<y<4.5$, for both prompt $J/\psi$ mesons and $J/\psi$ mesons from $b$-hadron decays. The production cross-sections integrated over the kinematic coverage are $15.03\pm 0.03\pm 0.94$ $\mu$b for prompt $J/\psi$ and $2.25\pm 0.01\pm 0.14$ $\mu$b for $J/\psi$ from $b$-hadron decays, assuming zero polarization of the $J/\psi$ meson. The first uncertainties are statistical and the second systematic. The cross-section reported for $J/\psi$ mesons from $b$-hadron decays is used to extrapolate to a total $b\bar{b}$ cross-section. The ratios of the cross-sections with respect to $\sqrt{s}=8$ TeV are also determined.

26 data tables

Double differential cross-section for prompt $J/\psi$ mesons as a function of $p_\perp$ in bins of $y$. The first uncertainties are statistical, the second are the correlated systematic uncertainties shared between bins and the last are the uncorrelated systematic uncertainties.

Double differential cross-section for prompt $J/\psi$ mesons as a function of $p_\perp$ in bins of $y$. The first uncertainties are statistical, the second are the correlated systematic uncertainties shared between bins and the last are the uncorrelated systematic uncertainties.

Double differential cross-section for $J/\psi$-from-$b$ mesons as a function of $p_\perp$ in bins of $y$. The first uncertainties are statistical, the second are the correlated systematic uncertainties shared between bins and the last are the uncorrelated systematic uncertainties.

More…