Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.
Charged particle sphericity distribution.
Charged particle aplanarity distribution.
Charged particle Thrust distribution.
Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.
Sphericity distribution.
Sphericity distribution.
Aplanarity distribution.
The large amount of data accumulated by the TASSO detector at 35 GeV c.m. energy has been compared with the predictions of the latest generation of perturbative QCD+fragmentation models. By adjustment of the arbitrary parameters of these models, a very good description of the global properties of hadronic events was obtained. No one model gave the best description of all features of the data, each model being better than the others for some observables and worse in other quantities. We interpret these results in terms of the underlying QCD and hadronisation schemes. The trends of the data across the energy range 12.0≦W≦41.5 GeV are generally well reproduced by the models with the parameters optimised at 35 GeV.
The errors include the statistical error and that from the correction procedure.
The errors include the statistical error and that from the correction procedure.
The errors include the statistical error and that from the correction procedure.