During the 1992 running period of the LEP e + e − collider, the DELPHI experiment accumulated approximately 24 pb − of data at the Z 0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z 0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m t = 157 −48 +36 (expt.) −20 +19 (Higgs) GeV, and for the effective mixing angle sin 2 θ eff lept = 0.2328 ± 0.0013 (expt.) −0.0003 +0.0001 (Higgs), where (Higgs) represents the variation due to Higgs boson mass in the range 60 to 1000 GeV, with central value 300 GeV.
No description provided.
First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only. An acollinearity less that 10 deg.
Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only.
We present a measurement of the ratio σB(W→eν)σB(Z0→e+e−) in p¯p collisions at s=1.8 TeV The data represent an integrated luminosity of 21.7 pb−1 from the 1992-1993 run of the Collider Detector at Fermilab. We find σB(W→eν)σB(Z0→e+e−)=10.90±0.32(stat)±0.29(syst). From this value, we extract a value for the W width, Γ(W)=2.064±0.061(stat)±0.059(syst) GeV, and the branching ratio, Γ(W→eν)Γ(W)=0.1094±0.0033(stat)±0.0031(syst), and we set a decay-mode-independent limit on the top quark mass mtop>62 GeV/c2 at the 95% C.L.
No description provided.
The reactions γp→K+ Λ and γp→K+ Σ0 have been measured with the multiparticle detector system SAPHIR at ELSA in Bonn. Besides the differential cross sections the Λ polarization and, for the first time, the Σ0 polarization have been determined in a photon induced reaction. All data are presented as functions of the photon energy (from threshold up to 1.47 GeV) and of the kaon production angle (0°–180°). The polarization of both Λ and Σ0 is substantial at all energies and varies strongly with the production angle.
Differential cross sections.
Total cross sections.
Differential cross sections.
The reaction p p → Λ Λ → p π + pπ − is studied in the experiment PS185 at the CERN Low Energy Antiproton Ring (LEAR). A precise measurement of the excitation function in the immediate threshold region below 6 MeV excess energy was achieved. The total cross section shows an unexpected behaviour around 1 MeV excess energy.
The values are calculated using M(p)=M(pbar) = 938.27231 Mev and M(lambda)=M(lambdabar) = 1115.63 MeV.
D(SIG)/D(OMEGA) as a function of COS(THETA(RF=CM)) for the nine intervals of the excess energy. Excess energy is SQRT(S)-M(lambda)-M(lambdabar).
The production of neutral pions has been studied in the reactions 40 Ar + nat Ca , 86 Kr + nat Zr and 197 Au + 197 Au at 1 A GeV. For high energy pions emitted from the heavier systems a steeper than linear rise of the pion multiplicity with the centrality of the reaction is observed, indicating a pion production process other than binary nucleon-nucleon collisions. At low transverse momenta an enhancement of the π 0 -multiplicity increasing with the mass of the collision system is found. Systematic discrepancies between the experimental results and recent BUU, QMD and Cascade calculations are discussed.
No description provided.
RESULTS OF AN EXTRAPOLATION TO THE FULL SOLID ANGLE TAKING THE EXPERIMENTALTEMPERATURES INTO ACCOUNT.
No description provided.
Negative pion spectra emitted in the reactions of 775 MeV/nucleon La139+12C and La139+139La reactions have been measured in coincidence with the projectile fragments using the HISS spectrometer at the Bevalac. Prominent peaks near the beam velocity were observed in the pion spectra. Position and widths of the peaks were studied as a function of the ‘‘sum charge’’ of projectile fragments which is a good measure of impact parameter; the smaller the ‘‘sum charge,’’ the smaller the impact parameter. The peak position down shifts with the smaller ‘‘sum charge.’’ The pion peak is wider in the transverse than in the longitudinal direction, possibly mirroring the velocity dispersions of projectile fragments in the early stage of reactions.
THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.
THE CHARGE IN THE TABLE IS THE SUM CHARGE OF OBSERVED FRAGB. A TWO-DIMENSIONAL SPECTRUM WAS FITTED BY A SINGLE TWO-DIMENSIONAL GAUSSIAN FUNCTION ON A FLAT BACKGROUND.
Electromagnetic fission cross sections of a 120 MeV/nucleon U238 beam incident on five targets, Be9, Al27, Cunat, Agnat, and Unat, have been extracted from measurements of projectile velocity fission fragments. The nuclear interaction contributions to the experimentally observed cross sections were determined by extrapolation from the Be target data using a geometrical scaling model and by an empirical decomposition of the fission charge distributions. The results are compared to model calculations in which electric quadrupole excitations have been included.
ELECTROMAGNETIC FISSION CROSS SECTIONS WERE DETERMINED FOR AL, CU, AG AND U TARGET, BE DATA IN TABLE CORRESPONDS TO NUCLEAR INTERACTION.
None
CROSS SECTION WAS ESTIMATED ASSUMING IT'S INDEPENDENCE OF THE ANTIPROTON M OMENTUM.
Using 773 muons found in hadronic events from 142 pb−1 of data at a c.m. energy of 57.8 GeV, we extract the cross section and forward-backward charge asymmetry for the e+e−→bb¯ process, and the heavy quark fragmentation function parameters for the Peterson model. For the analysis of the e+e−→bb¯ process, we use a method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The cross section and asymmetry for e+e−→bb¯ are found to be Rb = 0.57 ± 0.06(stat) ± 0.08(syst) and Ab = −0.59 ± 0.09 ± 0.09, respectively. They are consistent with the standard model predictions. For the study of the fragmentation function we use the variable 〈xE〉, the fraction of the beam energy carried by the heavy hadrons. We obtain 〈xE〉c=0.56−0.05−0.03+0.04+0.03 and 〈xE〉b=0.65−0.04−0.06+0.06+0.05, respectively. These are in good agreement with previously measured values.
No description provided.
No description provided.
Here X=E(hadron)/E(beam).
We have studied single photon production in e + e − annihilation based on a data sample corresponding to an integrated luminosity of 164.1 pb −1 at s =58 GeV . The single photon yield is consistent with the prediction of the standard model with three light neutrino species. No anomalous signal has been observed. From this result left- and right-handed scalar electrons in the mass degenerate case are excluded at 90% CL below 44.4 GeV/ c 2 for the massless photino.
No description provided.