We have measured the total normalized cross section R for the process e + e − → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb −1 . The data are well described by the standard SU(3) c ⊗SU(2) L ⊗U(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin 2 θ w and the strong coupling constant α s ( S ) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields α s (34 2 GeV 2 ) = 0.165±0.030, and sin 2 θ w = 0.236±0.020. Fixing sin 2 θ w at the world average value of 0.23 yields α s (34 2 GeV 2 ) = 0.169±0.025.
No description provided.
No description provided.
The strong interaction coupling constant α s has been measured with a new method, the planar triple energy correlation in the reaction e + e - → hadrons at center-of-mass energies ranging from 14 GeV to 46.78 GeV. A complete second-order perturbative QCD calculation was used. Λ MS = 110 ± 30 −55 +70 MeV is found.
No description provided.
No description provided.
No description provided.
A study of τ-lepton production in the CMS energy region from 14 to 46.8 GeV at PETRA is reported. The cross section, the decay branching ratio into μν ν , and the electroweak parameters are determined with a total integrated luminosity of 115 pb −1 .
Total cross section calculated from measured channel cross section assuming BR(tau-mu) = 17.6 pct. SIG(Q=MU) is the QED point cross section.
No description provided.
No description provided.
We use the reaction e+e−→hadrons, in the Mark J detector at the DESY electron-positron collider PETRA, to determine the hadronic cross section up to 46.78 GeV. The production of a top quark with a charge equal to (2/3) is excluded up to 46.6 GeV with 95% C.L. The observed rise in the cross section at higher energies is consistent with the electroweak prediction for a Z0 mass of 93 GeV. We describe some unusual muon inclusive events.
Errors are statistical only.
Energy scan of R.
Inclusive muon cross section.
An analysis of the three leptonic reactionse+e−→e+e−,μ+μ− andτ+τ− over a wide range of energy,\(12< \sqrt s< 46.78 GeV\) is presented. The data were obtained with the JADE detector at thee+e− storage ring PETRA. They are compared to predictions of electroweak theories, in particular the standard model. For the total cross-sections of all three reactions and for the differential cross-section of Bhabha scattering no deviation from QED is found over the entire energy range. The differential cross-sections of μ and τ pairs at high energies show the angular asymmetry predicted by electroweak interference. The axial-vector and vector weak coupling constant, sin2θW andMZ are determined and compared to other measurements. Finally, limits on deviations from the standard model are given.
No description provided.
No description provided.
No description provided.
The production and decay of τ-pairs was studied with the JADE detector at PETRA at center-of-mass energies of 30 ⩽√ s ⩽ 46.78 GeV. The total production cross section for τ-pairs agreed with QED predictions to order α 3 . Lower limits on QED cut-off parameters of Λ + > 285 GeV and Λ − > 210 GeV at 95% confidence level were ontained. The decay branching fractions into one and three charged particles were determined to be (86.1 ± 0.5 ± 0.9)% and (13.6±0.5 ±0.80)%. In the angular distributions a forward-backward asymmetry was observed, from which the axial-vector weak charge to the τ was determined to be a τ = −0.74 ± 0.22 in agreement with the standard model. An analysis of the process e + e − → τ + τ − γ showed agreement with QED calculations to O(α 3 ).
Includes data from earlier analysis at lower energy - M. Nozaki - Tokyo - UTLICEPP-82-02.
Angular distributions - data requested from authors.
Forward-backward asymmetry determined from fit to angular distribution of form N*(1 + cos(theta)**2 + (3/8)*A*cos(theta)).
We use the reaction e+e−→μ+μ−, in the Mark J detector at the DESY high-energy e+e− collider PETRA, to test the standard electroweak theory and find good agreement. We also set limits on the parameters of several extended gauge theories.
CROSS SECTION MEASUREMENT RELATIVE TO PREDICTED QED CROSS SECTION.
FORWARD-BACKWARD ASYMMETRY. THE SYSTEMATIC ERROR IN THE ASYMMETRY IS <0.5 PCT.
ANGULAR DISTRIBUTIONS NOT GIVEN IN PAPER. SUPPLIED BY E.DEFFUR.
We have observed τ pair production at average CM energies of 13.9, 22.3, 34.5 and 43.1 GeV. The cross-sections are consistent with QED, the cut off parameters beingΛ+>161 GeV andΛ−169 GeV (95% CL). The topological branching fraction of the τ to 1 charged particle,B1, is 0.847±0.011 (stat)−0.013+0.016(syst) and no decays to 5 charged particles were observed resulting inB5<0.007 (95% CL). Within the 3 charged track final stateB(τ−→π−π+π−v)/(B(τ−→π−π+π−v)+B(τ−→π−π+π−π0v))=0.37−0.20+0.35
No description provided.
No description provided.
The production of collinear muon pairs has been studied using the JADE detector at thee+e− storage ring at PETRA. Results for the total cross section and the angular distribution were obtained at centre of mass (cm) energies ranging from 12 to 46 GeV. The data correspond to an integrated luminosity offLdt>90 pb−1, of which 71.2 pb−1 were taken at\(\left\langle {\sqrt s } \right\rangle \)=34.4 GeV and 17 pb−1 at\(\left\langle {\sqrt s } \right\rangle \)=42.4 GeV. The results are compared to electroweak theories, in particular the “Standard Model”.
QED comparison is to point like cross section.
Angular distributions - data requested from authors.
Forward-backward asymmetry calculated from a fit to the angular distribution of the form 1: + cos(theta)**2 + Bcos(theta).. Asymmetries quoted here are extrapolated to full solid angle. The asymmetry at sqrt(s) = 34.4 is -11.10 +- 1.75 +- 1.0 pct if the end-cap points are included.
e + e − annihilation into hadrons was studied at CM energies between 39.8 and 45.2 GeV and a search was made for new heavy quarks. No evidence was found for the existence of a narrow state excluding the possible existence of the lowest vector toponium state in this mass range. A search for continuum production of heavy quarks led to lower mass limits for new quarks of 22.0 GeV ( e Q = 2 3 ) and 21.0 GeV ( e Q = 1 3 ). Quarks are found to be pointlike, the corresponding mass parameter being larger than 288 GeV. A fit of the QCD and the electroweak contributions to R = σ tot / σ μμ yielded sin 2 θ W = 0.30 −0.07 +0.23 .
STATISTICAL ERRORS ONLY. NUMERICAL VALUES OF DATA TAKEN FROM PREPRINT.
No description provided.
No description provided.