We present the first experimental study of the ratio of cumulant to factorial moments of the charged-particle multiplicity distribution in high-energy particle interactions, using hadronic Z$^0$ decays collected by the SLD experiment at SLAC. We find that this ratio, as a function of the moment-rank $q$, decreases sharply to a negative minimum at $q=5$, which is followed by quasi-oscillations. These features are insensitive to experimental systematic effects and are in qualitative agreement with expectations from next-to-next-to-leading-order perturbative QCD.
CONST is the cumulant to factorial moments ratio. See text for definition.
A fresh analysis is reported of high statistics Crystal Barrel data on p p → 3π 0 , ηηπ 0 , ηπ 0 π 0 and ηη ′ π 0 at rest. This analysis is made fully consistent with CERN-Munich data on π + π − → π + π − up to a mass of 1900 MeV, with GAMS data on π + π − → π 0 π 0 , and with BNL and ANL data on π + π − → K K , which are fitted simultaneously. There is evidence for an I = 0, J PC = 2 ++ resonance with weak (≤ 7%) coupling to ππ, strong coupling to both ϱϱ and ωω and pole position 1534 - i90 MeV. This resonance agrees qualitatively with GAMS and VES data on ππ → ωω, previously interpreted in terms of a resonance at 1590–1640 MeV. New masses and widths for (A) ƒ 0 (1370) and (B) ƒ 0 (1500) , fitted to all eight data sets, are M A = 1300 ± 15 Mev, Γ A = 230 ± 15 MeV, M B = 1500 ± 8 MeV, Γ B = 132 ± 15 MeV. Branching ratios to ππ and ηη are given, and differ significantly from earlier determinations because of a new procedure.
A fraction of the initial P-state annihilation into F2(1270) cannot be ruled out. Therefore, the ratio magnitudes include the contribution due to this channel. MESON0 denotes A2(1630) state, not present in RPP.
Data are presented on the reaction e+e− → γ + no other detected particle at centre-of-mass energies of 89.48, 91.26 and 93.08 GeV. The cross-section for this reaction is related directly to the number of light neutrino generations which couple to the Z° boson, and to several other possible phenomena such as the production of excited neutrinos, the production of any invisible ‘X’ particle, and the magnetic moment of the tau neutrino. Based on the observed number of single photon events, the number of light neutrinos that couple to the Z° is measured to be Nv = 2.89 ± 0.38. No evidence is found for anomalous production of energetic single photons, and upper limits at 95% confidence level are determined for excited neutrino production (BR < 4 − 8 × 10−6 depending on its mass), production of an invisible ‘X’ particle (σ, < 0.1 pb for masses below 60 GeV), and the magnetic moment of the tau neutrino (< 5.1 × 10-6 μB).
No description provided.
Limit on an anomalous magnetic moment for tau-neutrino from '1GAMMA + nothing' events. Magnetic moment in Bohr magnetons.
Here UNSPEC is invisible particle.
We searched for long-lived strange quark matter particles, so-called strangelets , and studied particle and antiparticle production in Pb + Pb collisions at 158 GeV/ c per nucleon at zero degree production angle. We give upper limits for the production of strangelets covering a mass to charge ratio up to 120 GeV/ c 2 and lifetimes t lab > 1.2 μ s and plot invariant differential production cross sections as a function of rapidity for a variety of particles.
No description provided.
Statistical error only.
No description provided.
No description provided.
From the data collected by DELPHI at LEP in autumn 1995, the multiplicity of charged particles at a hadronic energy of 130 GeV has been measured to be 〈 n ch 〉 = 23.84 ± 0.51 (stat) ± 0.52 (syst). When compared to lower energy data, the value measured is consistent with the evolution predicted by QCD with corrections at next-to-leading order, for a value α s (130 GeV) = 0.105 ± 0.003 (stat) ± 0.008 (syst).
No description provided.
None
The first sytematic error is due to the experimental uncertainties, whilst the second is due to the uncertainties in the quark charge separations.
The polarization of Λ baryons from Z decays is studied with the Aleph apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal Λ polarization is P L Λ = −0.32 ± 0.07 for z = p p beam > 0.3 . This agrees with the prediction of −0.39 ± 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for Λ production. The observed Λ polarization is diluted with respect to the primary s quark polarization by Λ baryons without a primary s quark. Measurements of the Λ forward-backward asymmetry and of the correlation between back-to-back Λ Λ pairs are used to check this dilution. In addition the transverse Λ polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the Λ direction.
No description provided.
No description provided.
No description provided.
We report our final results from the analysis of the full high statistics sample of events of the reaction ν μ + e − → μ − + ν c collected with the CHARM II detector in the CERN wide-band neutrino beam during the years 1988 to 1991. From a signal of 15758 ± 324 inverse muon decay events we derived, inthe Born approximation, a value of (16.51 ± 0.93) × 10 −42 cm 2 GeV −1 for the asymptotic cross section slope σ E ν , in goodagreement with the Standard Model prediction of 17.23 × 10 −42 cm 2 GeV −1 . The result constrains the scalar coupling of the electron and the muon to | g LL S | 2 < 0.475 at 90% CL.
23.8 is mean neutrino beam energy.
Born approximation of the asymptotic cross section slope obtained by applying radiative corrections, which amount to a 3% effect.. Error is combined statistics and systematics.. 23.8 is mean neutrino beam energy.
The inclusive jet differential cross section has been measured for jet transverse energies, $E_T$, from 15 to 440 GeV, in the pseudorapidity region 0.1$\leq | \eta| \leq $0.7. The results are based on 19.5 pb$~{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with $E_T>200$\ GeV is significantly higher than current predictions based on O($\alpha_s~3$) perturbative QCD calculations. Various possible explanations for the high-$E_T$\ excess are discussed.
No description provided.