Version 3
Differential cross-sections for events with missing transverse momentum and jets measured with the ATLAS detector in 13 TeV proton-proton collisions

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 08 (2024) 223, 2024.
Inspire Record 2765017 DOI 10.17182/hepdata.149990

Measurements of inclusive, differential cross-sections for the production of events with missing transverse momentum in association with jets in proton-proton collisions at $\sqrt{s}=13~$TeV are presented. The measurements are made with the ATLAS detector using an integrated luminosity of $140~$fb$^{-1}$ and include measurements of dijet distributions in a region in which vector-boson fusion processes are enhanced. They are unfolded to correct for detector resolution and efficiency within the fiducial acceptance, and are designed to allow robust comparisons with a wide range of theoretical predictions. A measurement of differential cross sections for the $Z~\to \nu\nu$ process is made. The measurements are generally well-described by Standard Model predictions except for the dijet invariant mass distribution. Auxiliary measurements of the hadronic system recoiling against isolated leptons, and photons, are also made in the same phase space. Ratios between the measured distributions are then derived, to take advantage of cancellations in modelling effects and some of the major systematic uncertainties. These measurements are sensitive to new phenomena, and provide a mechanism to easily set constraints on phenomenological models. To illustrate the robustness of the approach, these ratios are compared with two common Dark Matter models, where the constraints derived from the measurement are comparable to those set by dedicated detector-level searches.

0 data tables match query

Jet fragmentation function and groomed substructure of bottom quark jets in proton-proton collisions at 5.02 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIN-24-005, 2025.
Inspire Record 3083430 DOI 10.17182/hepdata.156184

A measurement of the substructure of bottom quark jets (b jets) in proton-proton (pp) collisions is presented. The measurement uses data collected in pp collisions at $\sqrt{s}$ = 5.02 TeV recorded by the CMS experiment in 2017, corresponding to an integrated luminosity of 301$^{-1}$. An algorithm to identify and cluster the charged decay daughters of b hadrons is developed for this analysis, which facilitates the exposure of the gluon radiation pattern of b jets using iterative Cambridge-Aachen declustering. The soft-drop-groomed jet radius, $R_\mathrm{g}$, and momentum balance, $z_\mathrm{g}$, of b quark jets are presented. These observables can be used to test perturbative quantum chromodynamics predictions that account for mass effects. Because the b hadron is partially reconstructed from its charged decay daughters, only charged particles are used for the jet substructure studies. In addition, a jet fragmentation function, $z_\text{b,ch}$, is measured, which is defined as the distribution of the ratio of the transverse momentum ($p_\mathrm{T}$) of the partially reconstructed b hadron with respect to the charged-particle component of the jet $p_\mathrm{T}$. The substructure variable distributions are unfolded to the charged-particle level. The b jet substructure is compared to the substructure of jets in an inclusive jet sample that is dominated by light-quark and gluon jets in order to assess the role of the b quark mass. A strong suppression of emissions at small $R_\mathrm{g}$ values is observed for b jets when compared to inclusive jets, consistent with the dead-cone effect. The measurement is also compared with theoretical predictions from Monte Carlo event generators. This is the first substructure measurement of b jets that clusters together the b hadron decay daughters.

0 data tables match query

Version 3
Measurement of jet production in deep inelastic scattering and NNLO determination of the strong coupling at ZEUS

The ZEUS collaboration Abt, I. ; Aggarwal, R. ; Aushev, V. ; et al.
Eur.Phys.J.C 83 (2023) 1082, 2023.
Inspire Record 2694205 DOI 10.17182/hepdata.145637

A new measurement of inclusive-jet cross sections in the Breit frame in neutral current deep inelastic scattering using the ZEUS detector at the HERA collider is presented. The data were taken in the years 2004 to 2007 at a centre-of-mass energy of $318\,\text{GeV}$ and correspond to an integrated luminosity of $347\,\text{pb}^{-1}$. Massless jets, reconstructed using the $k_t$-algorithm in the Breit reference frame, have been measured as a function of the squared momentum transfer, $Q^2$, and the transverse momentum of the jets in the Breit frame, $p_{\perp,\text{Breit}}$. The measured jet cross sections are compared to previous measurements and to perturbative QCD predictions. The measurement has been used in a next-to-next-to-leading-order QCD analysis to perform a simultaneous determination of parton distribution functions of the proton and the strong coupling, resulting in a value of $\alpha_s(M_Z^2) = 0.1142 \pm 0.0017~\text{(experimental/fit)}$${}^{+0.0006}_{-0.0007}~\text{(model/parameterisation)}$${}^{+0.0006}_{-0.0004}~\text{(scale)}$, whose accuracy is improved compared to similar measurements. In addition, the running of the strong coupling is demonstrated using data obtained at different scales.

0 data tables match query

Version 2
Measurements of the Higgs boson inclusive and differential fiducial cross-sections in the diphoton decay channel with $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 08 (2022) 027, 2022.
Inspire Record 2023464 DOI 10.17182/hepdata.137886

A measurement of inclusive and differential fiducial cross-sections for the production of the Higgs boson decaying into two photons is performed using $139~\text{fb}^{-1}$ of proton--proton collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio, in a fiducial region closely matching the experimental selection, is measured to be $67\pm 6$ fb, which is in agreement with the state-of-the-art Standard Model prediction of $64\pm 4$ fb. Extrapolating this result to the full phase space and correcting for the branching ratio, the total cross-section for Higgs boson production is estimated to be $58\pm 6$ pb. In addition, the cross-sections in four fiducial regions sensitive to various Higgs boson production modes and differential cross-sections as a function of either one or two of several observables are measured. All the measurements are found to be in agreement with the Standard Model predictions. The measured transverse momentum distribution of the Higgs boson is used as an indirect probe of the Yukawa coupling of the Higgs boson to the bottom and charm quarks. In addition, five differential cross-section measurements are used to constrain anomalous Higgs boson couplings to vector bosons in the Standard Model effective field theory framework.

0 data tables match query

Version 2
Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 11 (2021) 153, 2021.
Inspire Record 1894408 DOI 10.17182/hepdata.106115

A search is presented for new particles produced at the LHC in proton-proton collisions at $\sqrt{s} =$ 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb$^{-1}$, collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb$^{-1}$, collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.

0 data tables match query

High-precision measurement of the W boson mass with the CMS experiment at the LHC

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SMP-23-002, 2024.
Inspire Record 2860928 DOI 10.17182/hepdata.155627

In the standard model of particle physics, the masses of the carriers of the weak interaction, the W and Z bosons, are uniquely related. Physics beyond the standard model could change this relationship through the effects of quantum loops of virtual particles, thus making it of great importance to measure these masses with the highest possible precision. Although the mass of the Z boson is known to the remarkable precision of 22 parts per million (2.0 MeV), the W boson mass is known much less precisely, given the difficulty of the measurement. A global fit to electroweak data, used to predict the W boson mass in the standard model, yields an uncertainty of 6 MeV. Reaching a comparable experimental precision would be a sensitive and fundamental test of the standard model. Furthermore, a precision measurement of the W boson mass performed by the CDF Collaboration at the Fermilab Tevatron has challenged the standard model by significantly disagreeing with the prediction of the global electroweak fit and the average of other $m_\mathrm{W}$ measurements. We report the first W boson mass measurement by the CMS Collaboration at the CERN LHC, based on a data sample collected in 2016 at the proton-proton collision energy of 13 TeV. The W boson mass is measured using a large sample of W$\to\mu\nu$ events via a highly granular binned maximum likelihood fit to the kinematic properties of the muons produced in the W$^{+}$ and W$^{-}$ boson decays. The significant in situ constraints of theoretical inputs and their corresponding uncertainties, together with an accurate determination of the experimental effects, lead to a precise W boson mass measurement, $m_\mathrm{W} =$ 80$\,$360.2 $\pm$ 9.9 MeV, in agreement with the standard model prediction.

0 data tables match query

Search for a neutral gauge boson with nonuniversal fermion couplings in vector boson fusion processes in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 135 (2025) 061803, 2025.
Inspire Record 2863220 DOI 10.17182/hepdata.155915

The first search for a heavy neutral spin-1 gauge boson (Z') with nonuniversal fermion couplings produced via vector boson fusion processes and decaying to tau leptons or W bosons is presented. The analysis is performed using LHC data at $\sqrt{s}$ = 13 TeV, collected from 2016 to 2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are consistent with the standard model predictions. Upper limits are set on the product of the cross section for production of the Z' boson and its branching fraction to $ττ$ or WW. The presence of a Z' boson decaying to $τ^+τ^-$ (W$^+$W$^-$) is excluded for masses up to 2.45 (1.60) TeV, depending on the Z' boson coupling to SM weak bosons, and assuming a Z' $\to$$τ^+τ^-$ (W$^+$W$^-$) branching fraction of 50%.

0 data tables match query

Search for light pseudoscalar boson pairs produced from Higgs boson decays using the 4$τ$ and 2$μ$2$τ$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SUS-24-002, 2025.
Inspire Record 2959279 DOI 10.17182/hepdata.158360

A search for a pair of light pseudoscalar bosons (a$_1$) produced in the decay of the 125 GeV Higgs boson is presented. The analysis examines decay modes where one a$_1$ decays into a pair of tau leptons and the other decays into either another pair of tau leptons or a pair of muons. The a$_1$ boson mass probed in this study ranges from 4 to 15 GeV. The data sample was recorded by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponds to an integrated luminosity of 138 fb$^{-1}$. No excess above standard model (SM) expectations is observed. The study combines the 4$τ$ and 2$μ$2$τ$ channels to set upper limits at 95% confidence level (CL) on the product of the Higgs boson production cross section and the branching fraction to the 4$τ$ final state, relative to the Higgs boson production cross section predicted by the SM. In this interpretation, the a$_1$ boson is assumed to have Yukawa-like couplings to fermions, with coupling strengths proportional to the respective fermion masses. The observed (expected) upper limits range between 0.007 (0.011) and 0.079 (0.066) across the mass range considered. The results are also interpreted in the context of models with two Higgs doublets and an additional complex singlet field (2HD+S). The tightest constraints are obtained for the Type III 2HD+S model. In this case, assuming the Higgs boson production cross section equals the SM prediction, values of the branching ratio for the Higgs boson decay into a pair of a$_1$ bosons exceeding 16% are excluded at 95% CL for a$_1$ boson masses between 5 and 15 GeV and $\tanβ$ $\gt$ 2, with the exception of scenarios in which the a$_1$ boson mixes with charm or bottom quark-antiquark bound states.

0 data tables match query

Search for bosons of an extended Higgs sector in b quark final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
JHEP 06 (2025) 144, 2025.
Inspire Record 2878311 DOI 10.17182/hepdata.155471

A search for beyond-the-standard-model neutral Higgs bosons decaying to a pair of bottom quarks, and produced in association with at least one additional bottom quark, is performed with the CMS detector. The data were recorded in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC, and correspond to an integrated luminosity of 36.7-126.9 fb$^{-1}$ depending on the probed mass range. No signal above the standard model background expectation is observed. Upper limits on the production cross section times branching fraction are set for Higgs bosons in the mass range of 125-1800 GeV. The results are interpreted in benchmark scenarios of the minimal supersymmetric standard model, as well as suitable classes of two-Higgs-doublet models.

0 data tables match query

Measurements of inclusive and differential Higgs boson production cross sections at $\sqrt{s}$ = 13.6 TeV in the H $\to$$γγ$ decay channel

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
JHEP 09 (2025) 070, 2025.
Inspire Record 2915441 DOI 10.17182/hepdata.157577

Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is $σ_\text{fid}$ = 74 $\pm$ 11 (stat) $^{+5}_{-4}$ (syst) fb, in agreement with the standard model prediction of 67.8 $\pm$ 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions.

0 data tables match query