We present results on the production of high transverse momentum charm mesons in collisions of 515 GeV/c negative pions with beryllium and copper targets. The experiment recorded a large sample of events containing high transverse momentum showers detected in an electromagnetic calorimeter. From these data, a sample of charm mesons has been reconstructed via their decay into the fully charged K pi pi mode. A measurement of the single inclusive transverse momentum distribution of charged D mesons from 1 to 8 GeV/c is presented. An extrapolation of the measured differential cross section yields an integrated charged D cross section of 11.4+-2.7(stat)+-3.3(syst) microbarns per nucleon for charged D mesons with Feynman x greater than zero. The data are compared with expectations based upon next-to-leading order perturbative QCD, as well as with results from PYTHIA. We also compare our integrated charged D cross section with measurements from other experiments.
The mean values of PT are the PT values which correspond to the average values of the cross sections in the appropriate bins as determined by the PYTHIA Mponte-Carlo.
The PYTHIA Monte-Carlo simulation is used for extrapolation of D+- cross section for XL < -0.2.
Inclusive photoproduction of $\dspm$ in ep collisions at HERA has been measured with the ZEUS detector for photon-proton centre of mass energies in the range \linebreak \wrang and photon virtuality Q~2 < 4 \g2. The cross section $\sigma_{ep \to \ds X} $ integrated over the kinematic region \ptrangand \etarang is {\xsecs}. Differential cross sections as functions of $p_{\perp}~{\ds}$, $\eta~{\ds}$ and W are given. The data are compared with two next-to-leading order perturbative QCD predictions. For a calculation using a massive charm scheme the predicted cross sections are smaller than the measured ones. A recent calculation using a massless charm scheme is in agreement with the data.
Data from the (Kpi)pi channel.
Data from the (Kpipipi)pi channel.
Data from the (Kpi)pi channel.
Measurements of helicity density matrix elements have been made for the φ(1020), D*± and B* vector mesons in multihadronic Z0 decays in the OPAL experiment at LEP. Results for inclusive φ produced with high energy show evidence for production preferentially in the helicity zero state, with ρ00 = 0.54 ± 0.08, compared to the value of 1/3 expected for no spin alignment. The corresponding element for the D*± has a value of 0.40 ± 0.02, also suggesting a deviation from 1/3. The B* result, with ρ00 = 0.36 ± 0.09, is consistent with no spin alignment. Off-diagonal elements have been measured for the f and D* mesons; for the D* the element Re ρ1−1 is non-zero, indicating non-independent fragmentation of the primary quarks.
Helicity density matrices elements. Helicity beam frame is used.
Charge conjugated states are understood.
Helicity density matrices elements. Charge conjugated states are understood.
Using the VENUS detector at TRISTAN we have investigated the charm-quark production by detecting D*+ - mesons in the two-photon process of e+et - collisions. The study has confirmed that the charm-quark production rate is larger than that predicted from direct cc̅ production alone. The distribution of the transverse momentum of the D*+ t- mesons and the forward energy flow associated with the D*+ - production suggest that the main part of the observed excess comes from the contribution of a resolved photon process.
D* production cross section in the given kinematic ranges under the anti-tagging condition |cos(theta(e+-))|>0.990.
Two samples of exclusive semileptonic decays, 579 B 0 → D ∗+ ℓ − ν ℓ events and 261 B 0 → D + ℓ − ν ℓ events, are selected from approximately 3.9 million hadronic Z decays collected by the ALEPH detector at LEP. From the reconstructed differential decay rate of each sample, the product of the hadronic form factor F (ω) at zero recoil of the D (∗)+ meson and the CKM matrix element | V cb | are measured to be F D ∗+ (1)|V cb | = (31.9 ± 1.8 stat ± 1.9 syst ) × 10 −3 , F D + (1)| V cb | = (27.8 ± 6.8 stat ± 6.5 syst ) × 10 −3 . The ratio of the form factors F D + (1) and F D ∗+ (1) is measured to be F D + (1) F D ∗+ (1) = 0.87 ± 0.22 stat ± 0.21 syst . A value of | V cb | is extracted from the two samples, using theoretical constraints on the slope and curvature of the hadronic form factors and their normalization at zero recoil, with the result | V cb | = (34.4 ± 1.6 stat ± 2.3 syst ± 1.4 th ) × 10 −3 . The branching fractions are measured from the two integrated spectra to be Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (5.53 ± 0.26 stat ±0.52 syst ) %, Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (2.35 ± 0.20 stat ± 0.44 syst ) %.
The formfactors are evaluated at zero recoil of D meson. Two different methods are used (see text for details). VCB is the KCM matrix element. The formfactor fitted to dependence: FF(OM) = FF(1)*(1-CONST*(OM-1)).
VCB is the KCM matrix element.
VCB is the KCM matrix element.
Event shape and charged particle inclusive distributions are measured using 750000 decays of the Z to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET, ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.
Transverse momentum PTIN w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.
Transverse momentum PTOUT w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.
Transverse momentum PTIN w.r.t. the Sphericity axis. For the first table Sphericity axis definition is from seen charged particles corrected to final state particles. For the second table Sphericity axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.
We study the charge correlations between charm mesons produced in 500 GeV pi- - N interactions and the charged pions produced closest to them in phase space. With 110,000 fully reconstructed D mesons from experiment E791 at Fermilab, the correlations are studied as functions of the Dpi - D mass difference and of Feynman x. We observe significant correlations which appear to originate from a combination of sources including fragmentation dynamics, resonant decays, and charge of the beam.
No description provided.
A sample of 475 events, in which two charmed-particle decays are observed, is analyzed to determine distributions of two-particle kinematic variables. One charmed particle with x F > 0 is fully reconstructed and the other is at least partially recontructed. The distributions of Δø and p T 2 are compared with a next-to-leading order QCD calculation.
No description provided.
First results on inclusive D0 and D* production in deep inelastic $ep$ scattering are reported using data collected by the H1 experiment at HERA in 1994. Differential cross sections are presented for both channels and are found to agree well with QCD predictions based on the boson gluon fusion process. A charm production cross section for 10GeV$~2\le Q~2\le100$GeV$~2$ and $0.01\le y\le0.7$ of $\sigma\left(ep\rightarrow c\overlinecX\right) = (17.4 \pm 1.6 \pm 1.7 \pm 1.4)$nb is derived. A first measurement of the charm contribution F2_charm(x,Q~2) to the proton structure function for Bjorken $x$ between $8\cdot10~{-4}$ and $8\cdot10~{-3}$ is presented. In this kinematic range a ratio F2_charm/F2= 0.237\pm0.021{+0.043\atop-0.039}$ is observed.
Inclusive D meson production cross sections. The second systematc error represents the model uncertainty.
Inclusive charm meson cross section averaged for the two processes. The second systematc error represents the model uncertainty.
Ratio of cross sections of D0 and D* production.
We have measured the cross section of γ+D*± production in p¯p collisions at s=1.8TeV using the Collider Detector at Fermilab. In this kinematic region, the Compton scattering process (gc→γc) is expected to dominate and thus provide a direct link to the charm quark density in the proton. From the 45±18 γ+D*± candidates in a 16.4pb−1 data sample, we have determined the production cross section to be 0.38±0.15(stat)±0.11(syst) nb for the rapidity range |y(D*±)|<1.2 and |y(γ)|<0.9, and for the transverse momentum range pT(D*±)>6GeV/c and 16
No description provided.