A search for heavy neutral lepton production in $K^+$ decays using a data sample collected with a minimum bias trigger by the NA62 experiment at CERN in 2015 is reported. Upper limits at the $10^{-7}$ to $10^{-6}$ level are established on the elements of the extended neutrino mixing matrix $|U_{\ell 4}|^2$ ($\ell=e,\mu$) for heavy neutral lepton mass in the range $170-448~{\rm MeV}/c^2$. This improves on the results from previous production searches in $K^+$ decays, setting more stringent limits and extending the mass range.
The NA62 experiment at CERN has the capability to collect data in a beam-dump mode, where 400 GeV protons are dumped on an absorber. In this configuration, New Physics particles, including dark photons, dark scalars, and axion-like particles, may be produced in the absorber and decay in the instrumented volume beginning approximately 80 m downstream of the dump. A search for these particles decaying in flight to hadronic final states is reported, based on an analysis of a sample of $1.4 \times 10^{17}$ protons on dump collected in 2021. No evidence of a New Physics signal is observed, excluding new regions of parameter spaces of multiple models.
90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, using bremsstrahlung production without the time-like form factor.
90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, including mixing and bremsstrahlung production with a time-like form factor.
Number of expected $a \to K^+K^-\pi^0$ events for BR = 1 in the plane (mass, width) after full selection, for production in B meson decays assuming production coupling $C_{bs}/\Lambda=1\,\mathrm{GeV}^{-1}$. Acceptance for particles that reach the FV and decay therein and mass resolution.
The NA62 experiment at the CERN SPS reports a study of a sample of $4 \times10^{9}$ tagged $\pi^0$ mesons from $K^+ \to \pi^+ \pi^0 (\gamma)$, searching for the decay of the $\pi^0$ to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of $4.4 \times10^{-9}$ is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model-independent upper limit on the branching ratio for the decay $K^+ \to \pi^+ X$, where $X$ is a particle escaping detection with mass in the range 0.110-0.155 GeV$/c^2$ and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming $X$ to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.
scalar production search, see caption of Fig 8.
A search for heavy neutral lepton ($N$) production in $K^+\to e^+N$ decays using the data sample collected by the NA62 experiment at CERN in 2017--2018 is reported. Upper limits of the extended neutrino mixing matrix element $|U_{e4}|^2$ are established at the level of $10^{-9}$ over most of the accessible heavy neutral lepton mass range 144--462 MeV/$c^2$, with the assumption that the lifetime exceeds 50 ns. These limits improve significantly upon those of previous production and decay searches. The $|U_{e4}|^2$ range favoured by Big Bang Nucleosynthesis is excluded up to a mass of about 340 MeV/$c^2$.
The results of a search for $\pi^0$ decays to a photon and an invisible massive dark photon at the NA62 experiment at the CERN SPS are reported. From a total of $4.12\times10^8$ tagged $\pi^0$ mesons, no signal is observed. Assuming a kinetic-mixing interaction, limits are set on the dark photon coupling to the ordinary photon as a function of the dark photon mass, improving on previous searches in the mass range 60--110 MeV/$c^2$. The present results are interpreted in terms of an upper limit of the branching ratio of the electro-weak decay $\pi^0 \to \gamma \nu \overline{\nu}$, improving the current limit by more than three orders of magnitude.
The NA62 experiment at CERN reports searches for $K^+\to\mu^+N$ and $K^+\to\mu^+\nu X$ decays, where $N$ and $X$ are massive invisible particles, using the 2016-2018 data set. The $N$ particle is assumed to be a heavy neutral lepton, and the results are expressed as upper limits of ${\cal O}(10^{-8})$ of the neutrino mixing parameter $|U_{\mu4}|^2$ for $N$ masses in the range 200-384 MeV/$c^2$ and lifetime exceeding 50 ns. The $X$ particle is considered a scalar or vector hidden sector mediator decaying to an invisible final state, and upper limits of the decay branching fraction for $X$ masses in the range 10-370 MeV/$c^2$ are reported for the first time, ranging from ${\cal O}(10^{-5})$ to ${\cal O}(10^{-7})$. An improved upper limit of $1.0\times 10^{-6}$ is established at 90% CL on the $K^+\to\mu^+\nu\nu\bar\nu$ branching fraction.
The NA62 experiment at CERN, configured in beam-dump mode, has searched for dark photon decays in flight to electron-positron pairs using a sample of $1.4\times 10^{17}$ protons on dump collected in 2021. No evidence for a dark photon signal is observed. The combined result for dark photon searches in lepton-antilepton final states is presented and a region of the parameter space is excluded at 90% CL, improving on previous experimental limits for dark photon mass values between 50 and 600 MeV$/c^2$ and coupling values in the range $10^{-6}$ to $4\times10^{-5}$. An interpretation of the $e^+ e^-$ search result in terms of the emission and decay of an axion-like particle is also presented.
The NA62 experiment at CERN, designed to study the ultra-rare decay $K^+ \to \pi^+\nu\overline{\nu}$, has also collected data in beam-dump mode. In this configuration, dark photons may be produced by protons dumped on an absorber and reach a decay volume beginning 80 m downstream. A search for dark photons decaying in flight to $\mu^+\mu^-$ pairs is reported, based on a sample of $1.4 \times 10^{17}$ protons on dump collected in 2021. No evidence for a dark photon signal is observed. A region of the parameter space is excluded at 90% CL, improving on previous experimental limits for dark photon masses between 215 and 550 MeV$/c^2$.
A sample of 3984 candidates of the $K^+\to\pi^+\gamma\gamma$ decay, with an estimated background of $291\pm14$ events, was collected by the NA62 experiment at CERN during 2017-2018. In order to describe the observed di-photon mass spectrum, the next-to-leading order contribution in chiral perturbation theory was found to be necessary. The decay branching ratio in the full kinematic range is measured to be $(9.61\pm0.17)\times10^{-7}$. The first search for production and prompt decay of an axion-like particle with gluon coupling in the process $K^+\to\pi^+a$, $a\to\gamma\gamma$ is also reported.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.