AN INVESTIGATION OF THE 1.4-GeV/c**2 NUCLEON ISOBAR IN PROTON PROTON INTERACTIONS

Tan, T.H. ; Perl, Martin L. ; Martin, F. ; et al.
Phys.Lett.B 28 (1968) 195-198, 1968.
Inspire Record 52678 DOI 10.17182/hepdata.29198

The production of N ∗ (1400) isobar in the reaction pp → pN ∗+ (1400), where N ∗ (1400) → n π + and p π 0 , is investigated with the aid of one-pion exchange model. The one-pion exchange mechanism does not seem to dominate the production process. The isospin of N ∗ (1400) is found to be I = 1 2 , and the elasticity of the resonance is estimated to be 0.66.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (?////Due to fitting mass spectrum).


Charged Hadron Multiplicities and Inclusive pi- Distributions in Inelastic e p Scattering

Chen, C.K. ; Knowles, J. ; Martin, D. ; et al.
Nucl.Phys.B 133 (1978) 13-37, 1978.
Inspire Record 121936 DOI 10.17182/hepdata.35153

Electroproduction of hadrons is studied in the kinematic region W < 2.8 GeV and 0.3 < Q 2 < 1.4 GeV 2 using the DESY streamer chamber. Prong cross sections, charged-particle multiplicities and inclusive π − distributions are presented. The average charged multiplicity is found to be independent of Q 2 in the Q 2 range studied here; however it is lower than in photoproduction. The fraction of forward π − is found to be significantly less in electroproduction than in photoproduction. The 〈 p ⊥ 2 〉 for inclusive π − is, for all x values, similar to that found in photoproduction.

15 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of Spin Spin Correlation Parameter C(NN) in Proton Proton Scattering at 6-GeV/c

Hicks, G. ; Miller, D. ; Wilson, C. ; et al.
Phys.Rev.D 12 (1975) 2594, 1975.
Inspire Record 91591 DOI 10.17182/hepdata.24849

As part of a program to determine proton-proton elastic-scattering amplitudes, we have measured the spin-spin correlation parameter CNN at 6 GeV/c. Measurements were made over the |t| range of 0.08 to 1.4 (GeV/c)2 using a polarized beam and a polarized target at the Argonne National Laboratory Zero Gradient Synchrotron.

1 data table match query

No description provided.


The $e^+ e^-\to K^+ K^- \pi^+\pi^-$, $K^+ K^- \pi^0\pi^0$ and $K^+ K^- K^+ K^-$ Cross Sections Measured with Initial-State Radiation

The BaBar collaboration Aubert, Bernard ; Bona, M. ; Boutigny, D. ; et al.
Phys.Rev.D 76 (2007) 012008, 2007.
Inspire Record 747875 DOI 10.17182/hepdata.50373

We study the processes $e^+ e^-\to K^+ K^- \pi^+\pi^-\gamma$, $K^+K^-\pi^0\pi^0\gamma$ and $K^+ K^- K^+ K^-\gamma$, where the photon is radiated from the initial state. About 34600, 4400 and 2300 fully reconstructed events, respectively, are selected from 232 \invfb of \babar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that the $K^+ K^- \pi^+\pi^-\gamma$ data can be compared with direct measurements of the $e^+ e^-\to K^+K^- \pipi$ reaction/ no direct measurements exist for the $e^+ e^-\to K^+ K^- \pi^0\pi^0$ or $\epem\to K^+ K^- K^+ K^-$ reactions. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\phi(1020) f_{0}(980)$ and study its structure near threshold. In the charmonium region, we observe the $J/\psi$ in all three final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and measure the corresponding branching fractions. We see no signal for the Y(4260) and obtain an upper limit of $\BR_{Y(4260)\to\phi\pi^+\pi^-}\cdot\Gamma^{Y}_{ee}<0.4 \ev$ at 90% C.L.

7 data tables match query

Measurement of the E+ E- --> K+ K- PI+ PI- cross section. Statistical errors only.

Measurement of the E+ E- --> K(892)0 K PI cross section. Statistical errors only.

Measurement of the E+ E- --> PHI PI+ PI- cross section. Statistical errors only.

More…

Precision Study of $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ Decay Dynamics

The BESIII collaboration Ablikim, M. ; Achasov, M. N. ; Ahmed, S. ; et al.
Phys.Rev.Lett. 120 (2018) 242003, 2018.
Inspire Record 1641075 DOI 10.17182/hepdata.89872

Using a low background data sample of $9.7\times10^{5}$ $J\psi\rightarrow\gamma\eta^\prime$, $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ are studied with both model-dependent and model-independent approaches. The contributions of $\omega$ and the $\rho(770)-\omega$ interference are observed for the first time in the decays $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ in both approaches. Additionally, a contribution from the box anomaly or the $\rho(1450)$ resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.

1 data table match query

Numbers of events selected (Column 2), numbers of background events from sideband (Column 3), efficiencies (Column 4), and resolution RMS (Column 5) for different $M_{\pi^+\pi^-}$ bins.


Measurement of the Polarization in the Forward Peak of pi- p --> K0 Lambda at 5-GeV/c

Beusch, W. ; Borghini, M. ; Lauper, S. ; et al.
Nucl.Phys.B 99 (1975) 53-60, 1975.
Inspire Record 89729 DOI 10.17182/hepdata.31783

The π − p→K 0 λ polarization has been measured at 5 GeV/ c in the range 0<− t <1.4 (GeV/ c ) 2 . The polarization is small for − t ⪅0.4 (GeV/ c ) 2 , becoming negative at the higher values of − t .

1 data table match query

No description provided.


Hadron Production by Virtual Photons in the Quark Fragmentation Region

Scarr, J.M. ; Chen, C.K. ; Knowles, J. ; et al.
Nucl.Phys.B 135 (1978) 224-236, 1978.
Inspire Record 122308 DOI 10.17182/hepdata.35139

We have measured the inclusive electroproduction of positive and negative hadrons in the quark fragmentation region using the streamer chamber at DESY. Data are presented in terms of the variable z p = p / v in the kinematic region 1.8 < W < 2.8 GeV and 0.3 < Q 2 < 1.4 GeV 2 . The positive hadron distributions contain a strong proton component. After subtraction of the proton component and elastic rho events, the distribution (1/ σ tot ) d σ /d z p for positive and negative hadrons agrees well with the corresponding distribution from e + e − annihilation (DORIS data). This behaviour supports the validity of the quark-parton model at surprisingly low Q 2 and W .

1 data table match query

No description provided.


Total p-p and 'p-n' Cross Sections at Cosmotron Energies

Chen, Francis F. ; Leavitt, Christopher P. ; Shapiro, Anatole M. ;
Phys.Rev. 103 (1956) 211-225, 1956.
Inspire Record 46809 DOI 10.17182/hepdata.828

The total proton-proton cross section (excluding Coulomb scattering) has been measured at energies from 410 Mev up to 2.6 Bev, using external beams from the Cosmotron. Fast counting equipment was used to measure the attenuation of the beams through polyethylene, carbon, and liquid H2 absorbers. At each energy E, σp−p(E, Ω) was measured as a function of the solid angle Ω subtended by the rear counter at the center of the absorber. The total cross section σp−p was obtained by a least squares straight line extrapolation to Ω=0. The measured σp−p as a function of energy rises sharply from 26.5 mb at 410 Mev to 47.8 mb at 830 Mev and then remains approximately constant out to 1.4 Bev, above which energy it decreases gradually to about 42 mb at 2.6 Bev. Using the same equipment and procedure, we have also measured the D2O-H2O difference cross section, called "σp−n," for protons over the same energy range. From a comparison of "σp−n," and σp−p, with the n−p and n−d measurements of Coor et al. at 1.4 Bev, it is apparent that one nucleon is "shielded" by the other in the deuteron. This effect is not present at energies below 410 Mev. Comparing the measured p−p and "p−n" (corrected) cross sections with the results of other high-energy experiments, one may infer the following conclusions: (1) The sharp rise in σp−p from 400 to 800 Mev results from increasing single pion production, which may proceed through the T=32, J=32 excited nucleon state. (2) Above 1 Bev the inelastic (meson production) p−p cross section appears to be approximately saturated at 27-29 mb. (3) The rise in cross section for n−p interaction in the T=0 state, associated with the rise in double pion production, implies that double meson production also proceeds through the T=32 nucleon state. (4) The probable equality of σp−d and σn−d at 1.4 Bev implies the validity of charge symmetry at this energy.

4 data tables match query

No description provided.

No description provided.

More…

Cascade production in the reactions gamma p --> K+ K+ (X) and gamma p --> K^+ K^+ pi- (X)

Guo, L. ; Weygand, D.P. ; Battaglieri, M. ; et al.
Phys.Rev.C 76 (2007) 025208, 2007.
Inspire Record 744487 DOI 10.17182/hepdata.31494

Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.

47 data tables match query

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.

More…

Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

The CLAS collaboration Dharmawardane, K.V. ; Kuhn, S.E. ; Bosted, Peter E. ; et al.
Phys.Lett.B 641 (2006) 11-17, 2006.
Inspire Record 717523 DOI 10.17182/hepdata.6726

We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

68 data tables match query

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1300 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1500 GeV.

A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1700 GeV.

More…