A Measurement of the Proton Proton Cross-Section at the CERN ISR

Eggert, K. ; Frenzel, H. ; Giboni, K.L. ; et al.
Nucl.Phys.B 98 (1975) 93-99, 1975.
Inspire Record 99601 DOI 10.17182/hepdata.31897

We present a measurement of the total cross section σ t in proton-proton collisions at the CERN ISR. The method involves determination of the total interaction rate and machine luminosity. A two-arm scintillation hodoscope observes ∼ 90% of the total interaction rate, while a streamer chamber is employed for event topologies missed by the main trigger. An increase of about 10% in σ t is observed in the energy range √ s = 23.6 to √ s = 62.8 GeV/ c in agreement with previous experiments.

1 data table

VAN DER MEER METHOD.


The Real Part of the Forward Proton Proton Scattering Amplitude Measured at the CERN Intersecting Storage Rings

Amaldi, U. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett.B 66 (1977) 390-394, 1977.
Inspire Record 110800 DOI 10.17182/hepdata.27584

The real part of the proton proton elastic scattering amplitude has been determined from its interference with the Coulomb amplitude at total centre-of-mass energies up to 62 GeV. The observed steady increase of ϱ with energy indicates that the total proton proton cross section continues to increase well beyond this energy.

2 data tables

No description provided.

USING SIG AND SLOPE OBTAINED FROM INTERPOLATIONS OF PREVIOUS MEASUREMENTS.


A Study of the Charge Exchange Reaction p p --> n Delta++ (1232) at ISR Energies

de Kerret, H. ; Nagy, E. ; Orr, R.S. ; et al.
Phys.Lett.B 69 (1977) 372-376, 1977.
Inspire Record 120459 DOI 10.17182/hepdata.27539

We report on a study of the charge-exchange reaction pp → nΔ ++ (1232) at the CERN intersecting storage rings (ISR) in the energy range √ s = 23 to 53 GeV. From our analysis of the energy dependence of the total cross-section, of the differential cross-section d σ /d t and of the decay angular distributions we find evidence that pion exchange is dominant up to √ s = 23 GeV and that ( ϱ +A 2 ) exchange dominates the reaction for √ s ⩾ 30 GeV, as described by simple Regge-pole models.

6 data tables

THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.

THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.

No description provided.

More…

Charged Particle Multiplicity Distributions in p p Collisions at ISR Energies

The Aachen-CERN-Heidelberg-Munich collaboration Thome, W. ; Eggert, K. ; Giboni, K. ; et al.
Nucl.Phys.B 129 (1977) 365, 1977.
Inspire Record 120863 DOI 10.17182/hepdata.55890

We present the first direct measurements of charged-particle multiplicity distributions for pp collisions at ISR energies. The measurements are performed by means of a streamer chamber detector with large solid-angle coverage and excellent multitrack efficiency. Particle densities are observed to rise in the central region as s increases. The multiplicity distributions in this region deviate from a Poisson Law, thus giving evidence for correlations. These correlations are of the same type as those obtained from clustering of the collision products. The mean charged multiplicity over the full rapidity range increases faster than log s . Our data do not support an early onset of KNO multiplicity scaling.

4 data tables

Pseudorapidity distribution at 23.6 GeV.

Pseudorapidity distribution at 45.2 GeV.

Pseudorapidity distribution at 62.8 GeV.

More…

The Cross-Section for the Production of Massive electron Pairs and the Upsilon (9.5-GeV) in Proton Proton Collisions at the CERN ISR

Cobb, J.H. ; Iwata, S. ; Palmer, R.B. ; et al.
Phys.Lett.B 72 (1977) 273-277, 1977.
Inspire Record 122577 DOI 10.17182/hepdata.27504

Measurements of the cross section for the production of electron pairs with invariant masses between 4 and 8.7 GeV are presented as a function of the centre-of-mass energy ( s = 28 to s = 62 GeV ) of the colliding proton beams. A significant excess of events is observed in the region 8.7 to 10.3 GeV; these are ascribed to the ϒ(9.5 GeV) resonances and estimates of the production cross sections are given.

2 data tables

Axis error includes +- 40/40 contribution (Due to the uncertainty in efficiency).

Axis error includes +- 40/40 contribution (Due to the uncertainty in efficiency).


Study of Resolved High {P(T)} Neutral Pions at the {CERN} {ISR}

Kourkoumelis, C. ; Resvanis, L.K. ; Voulgaris, G. ; et al.
Phys.Lett.B 83 (1979) 257-260, 1979.
Inspire Record 140588 DOI 10.17182/hepdata.27353

The inclusive production of π 0 at large values of p T in pp collisions at the ISR has been studied. In this experiment the two photons are resolved and separately measured for p T values of up to 6 GeV/ c , giving confidence that the desired signal has been separated from various backgrounds.

1 data table

No description provided.


Direct Production of High $p_T$ Single Photons at the {CERN} Intersecting Storage Rings

The Athens-Athens-Brookhaven-CERN collaboration Diakonou, M. ; Kourkoumelis, C. ; Resvanis, L.K. ; et al.
Phys.Lett.B 87 (1979) 292-296, 1979.
Inspire Record 143254 DOI 10.17182/hepdata.27293

Single photon production in pp collisions at 30 < √ s < 62 GeV has been measured with liquid-argon-lead calorimeters at the CERN ISR. This process remains approximately constant with increasing √ s . For fixed √ s , the single photon to π 0 ratio increases strongly with increase in p T . The γ π 0 ratio is about 0.2 for p T above 4.5 GeV/c.

1 data table

No description provided.


Characteristics of J/$\psi$ and $\Upsilon$ production at the {CERN} intersecting storage rings

Kourkoumelis, C. ; Resvanis, L. ; Filippas, T.A. ; et al.
Phys.Lett.B 91 (1980) 481-486, 1980.
Inspire Record 152744 DOI 10.17182/hepdata.27235

We present the B( d θ d y ) y=0 for J /ψ over thefull range of ISR energies and for ϒ at √ s = 53 and 63 GeV, using their dielectron decay mode. The average transverse momentum and the decay angles are presented. We found ( p T ) = 1.75 ± 0.19 GeV for ϒ, being higher than ( p T ) of the continuum and rising with √s. We present a comparison of the cross sections of J/ψ and ϒ with those of the continuum, at the same masses, as a function of √s. An appropriate scaling of the hadronic production of quark-antiquark narrow bound states involving ⋉, J/ψ, ψ′, ϒ, and ϒ′ is presented as a function of m /√ s at y = 0, and is compared with Drell-Yan scaling.

2 data tables

No description provided.

UPSILON HERE = UPSILON+UPSILON PRIME.


Measurement of $\bar{p}p$ Elastic Scattering at $\sqrt{s}=52.8$-{GeV} at the {CERN} Intersecting Storage Rings

Favart, D. ; Lipnik, P. ; Macq, P. ; et al.
Phys.Rev.Lett. 47 (1981) 1191, 1981.
Inspire Record 167714 DOI 10.17182/hepdata.3302

The small-angle elastic scattering for pp at s=23.5, 30.7, and 52.8 GeV and for p¯p at s=52.8 GeV are measured. The data are normalized on Coulomb scattering. Using the optical theorem and the best estimate of the real part of the forward scattering amplitude, ρ(pp¯)=0.1, we obtain σtot(p¯p)=44.1±2.9 mb for the total cross section and b(p¯p)=13.6±2.2 GeV−2 for the nuclear slope parameter. This supports the dispersion relation prediction that σtot(p¯p) will start to rise above Elab≈200 GeV.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Comparison of Small Angle p$ \Bar{$p$}$ and p p Elastic Scattering at the {CERN} Intersecting Storage Rings

Amos, Norman A. ; Block, M.M. ; Bobbink, G.J. ; et al.
Phys.Lett.B 128 (1983) 343-348, 1983.
Inspire Record 190335 DOI 10.17182/hepdata.30667

Antiproton-proton and proton-proton small-angle elastic scattering have been measured for centre-of-mass energies √ s = 30.7 and 62.5 GeV at the CERN Intersecting Storage Rings (ISR). Antiproton-proton and proton-proton total cross sections are obtained using the optical theorem. The measurement of the Coulomb scattering and its interference with the nuclear scattering allows a determination of the ratio of the real-to-imaginary part of the forward nuclear scattering amplitude. Also presented are measurements for the nuclear slope parameter at √ s = 62.5 GeV. Our new results reinforce the conclusions drawn recently from our measurements at √ s = 52.8 GeV. In particular, the pp̄ total cross section is rising at ISR energies and should continue to rise well beyond these energies.

4 data tables

DATA REQUESTED FROM AUTHORS.

RESULTS OF FITS.

RESULTS OF FITS.

More…