We examine the negative 3π final state produced in association with Δ++(1232) in the reaction γp→Δ++π+π−π− at an incident photon energy of 19.3 GeV. The most prominent enhancement in the 3π spectrum occurs at a mass and with a width consistent with the parameters of the a2(1320). This identification is confirmed by the various angular distributions. The a2 production cross section, corrected for efficiencies and alternate a2 decay modes, is 0.45±0.05 μb.
No description provided.
The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).
No description provided.
An analysis has been performed of neutrino and antineutrino interactions with protons and neutrons in a deuterium bubble chamber. The interactions under study are quasielastic neutrino-neutron scattering and one-, two- and three-pion production reactions. Results are presented on cross sections, effective mass distributions, resonance production, momentum transfer distributions and coefficients of the decay angular distributions. Where possible, comparisons are made with existing theoretical models and predictions.
No description provided.
Numerical values supplied by A.Tenner.
Numerical values supplied by A.Tenner.
Using data onvp and\(\bar vp\) charged current interactions from a bubble chamber experiment with BEBC at CERN, the average multiplicities of charged hadrons and pions are determined as functions ofW2 andQ2. The analysis is based on ∼20000 events with incidentv and ∼10000 events with incident\(\bar v\). In addition to the known dependence of the average multiplicity onW2 a weak dependence onQ2 for fixed intervals ofW is observed. ForW>2 GeV andQ2>0.1 GeV2 the average multiplicity of charged hadrons is well described by〈n〉=a1+a2ln(W2/GeV2)+a3ln(Q2/GeV2) witha1=0.465±0.053,a2=1.211±0.021,a3=0.103±0.014 for thevp anda1=−0.372±0.073,a2=1.245±0.028,a3=0.093±0.015 for the\(\bar vp\) reaction.
No description provided.
No description provided.
No description provided.
None
Data from Run 1. There is an additional overall systematic uncertainty of 5.2 pct.
Data from Run 2. There is an additional overall systematic uncertainty of 5.2 pct.
Average R value.
The Fermilab 15-ft bubble chamber has been exposed to a quadrupole triplet neutrino beam produced at the Tevatron. The ratio of ν to ν¯ in the beam is approximately 2.5. The mean event energy for ν-induced charged-current events is 150 GeV, and for ν¯-induced charged-current events it is 110 GeV. A total of 64 dimuon candidates (1 μ+μ+, 52 μ−μ+ and μ+μ−, and 11 μ−μ−) is observed in the data sample of approximately 13 300 charged-current events. The number and properties of the μ−μ− and μ+μ+ candidates are consistent with their being produced by background processes, the important sources being π and K decay and punchthrough. The 90%-C.L. upper limit for μ−μ−/μ− for muon momenta above 4 GeV/c is 1.2×10−3, and for momenta above 9 GeV/c this limit is 1.1×10−3. The opposite-sign-dimuon–to–single-muon ratio is (0.62±0.13)% for muon momenta above 4 GeV/c. There are eight neutral strange particles in the opposite-sign sample, leading to a rate per dimuon event of 0.65±0.29. The opposite-sign-dimuon sample is consistent with the hypothesis of charm production and decay.
No description provided.
No description provided.
No description provided.
We present a measurement of the total cross section for γγ→hadrons, with one photon quasireal and the other a spacelike photon of mass squared −Q2. Results are presented as a function of Q2 and the γγ center-of-mass energy W, with the Q2 range extending from 0.2 to 60 GeV2, and W in the range from 2 to 10 GeV. The data were taken with the TPC/Two-Gamma facility at the SLAC e+e− storage ring PEP, which was operated at a beam energy of 14.5 GeV. The cross section exhibits a gentle falloff with increasing W. Its Q2 dependence is shown to be well described by an incoherent sum of vector-meson and pointlike scattering over most of the observed W range. Agreement at high Q2 is improved if a minimum-pT cutoff (motivated by QCD) is imposed on the pointlike contribution.
Errors are statistical only.
Errors are statistical only.
Errors are statistical only.
The two-jet differential cross section d3σ(p¯p→jet 1+jet 2+X)/dEtdη1dη2, averaged over -0.6≤η1≤0.6, at √s =1.8 TeV, has been measured in the Collider Detector at Fermilab. The predictions of leading-order quantum chromodynamics for most choices of structure functions show agreement with the data.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
This paper reports studies of the reactions γp→ρ π π πp and γp→ρ ρ πp. In particular a peak is reported in the ρ ρ π mass spectrum with closely similar mass and width to those of the ω ρ π peak previously reported in the reaction γp→ω ρ πp. The ratio of production cross sections is found to be ρ ρ π/ω ρ π=0.96±0.19, in serious disagreement with the expectation from Vector Meson Dominance. A possible explanation is indicated.
No description provided.
Numerical values requested from authors.
The azimuthal dependence of the flow of hadronic energy about the momentum-transfer direction in charged-current deep-inelastic neutrino-nucleon scattering is used to study gluon emission and the transverse momentum 〈kT〉 of partons confined inside the nucleon. A 7-standard-deviation azimuthal asymmetry is observed indicating an average 〈kT〉=0.303±0.041 GeV/c.
No description provided.
No description provided.
No description provided.