The total cross section for e + e − annihilation into hadronic final states between 3.6 and 5.2 GeV was measured by the nonmagnetic inner detector of DASP, which has similar trigger and detection efficiencies for photons and charged particles. The measured difference in R = σ had / σμμ between 3.6 GeV and 5.2 GeV is ΔR = 2.1 ± 0.3. We observe three peaks at cm energies of 4.04, 4.16 and 4.417 GeV, the parameters of which, when interpreted as resonances, are given.
EXCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.
INCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.
We observe a resonance in the total cross section for hadron production in e+e− annihilation at a mass of 3772±6 MeV/c2 having a total width of 28±5 MeV/c2 and a partial width to electron pairs of 370±90 eV/c2.
BEFORE ANY RADIATIVE CORRECTIONS.
AFTER APPLYING ALL RADIATIVE CORRECTIONS.
None
SINGLE CHARGED PARTICLE MOMENTUM DISTRIBUTION.
No description provided.
No description provided.
We observe a resonancelike structure in the total cross section for hadron production by e+e− colliding beams at a mass of 4414 ± 7 MeV having a total width Γ=33±10 MeV. From the area under this resonance, we deduce the partial width to electron pairs to be Γee=440±140 eV. Further structure of comparable width is present near 4.1 GeV.
No description provided.
The production of multipion events by e + e − annihilation has been measured at centre of mass energies 915,990 and 1076 MeV. Both channels e + e − → π + π − π o and e + e − → π + π − π + π − have been analysed. An energy threshold effect analysed. An energy threshold effect around 919 MeV ( m ω + m π o ) has been evidenced for the π + π − π o π o channel and the cross section is consistent with the quasi two-body process e + e − → ωπ o . The cross section for π + π − π + π − is lower by an order of magnitude and increases with the energy.
SYSTEMATIC ERROR INCLUDED. RADIATIVE EFFECT (<15 PCT) INCLUDED.
MULTIHADRON PRODUCTION CROSS SECTION DEDUCED AS SUM OF FOUR PION CHANNELS.
The possible existence of new vector mesons above the ρ is investigated. The conclusion is that our data are compatible with the existence of the ρ′-meson only if we assume as a firm theoretical prediction the Gounaris-Sakurai tail of the standard ρ-meson. Furthermore our data are compatible with the existence of the ρ″-meson if we assume the validity of the\(\bar p\)p model for the calculation of the multihadron cross-section.
THESE MEASUREMENTS OF THE PION FORM FACTOR ARE GIVEN IN D. BOLLINI ET AL., NCL 14, 418 (1975).
THESE MEASUREMENTS OF THE FOUR CHARGED PION CROSS SECTION ARE GIVEN IN M. BERNARDINI ET AL., PL 53B, 384 (1974).
THESE MEASUREMENTS OF THE TOTAL HADRONIC CROSS SECTION ARE GIVEN IN M. BERNARDINI ET AL., PL 51B, 200 (1974).
Cross sections for e+e−→hadrons, e+e−, and μ+μ− near 3684 MeV are presented. The ψ(3684) resonance is established as having the assignment JPC=1−−. The mass is 3684 ± 5 MeV. The partial width for decay to electrons is Γe=2.1±0.3 keV and the total width is Γ=228±56 keV.
No description provided.
A search for narrow resonances in the reaction e + e − → hadrons in the mass regions 1915–2345 MeV and 2970–3090 MeV has been perforned at ADONE, the Frascati storage ring. With 90% confidence level our data exclude the production of narrow resonances with integrated cross section larger than 20% of the integrated cross section for production of the J/Ψ (3100 MeV).
No description provided.
We present cross sections for e+e−→hadrons, e+e−, and μ+μ− near 3095 MeV. The ψ(3095) resonance is established as having an assignment JPC=1−−. The mass is 3095 ±4 MeV. The partial width to electrons is Γe=4.8±0.6 keV and the total width Γ=69±15 keV. Total rates and interference measurements for the lepton channels are in accord with μ−e universality.
No description provided.
We have searched the mass region 3.2 to 5.9 GeV for evidence of narrow resonances in e+e−→hadrons. We find no evidence for any such resonances other than the ψ(3695) in this region with a sensitivity ranging from about 12 to 45% of the integrated cross section of the ψ(3695). The more stringent bounds apply to resonances of a few MeV width, while the looser bounds apply to resonances of up to 20 MeV width.
EXTREAMLY GOOD DATA, MUST BE ASCED FROM AUTHORS.