Date

Search for new particles decaying to dijets in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 74 (1995) 3538-3543, 1995.
Inspire Record 392053 DOI 10.17182/hepdata.42387

We have used 19 pb**-1 of data collected with the Collider Detector at Fermilab to search for new particles decaying to dijets. We exclude at 95% confidence level models containing the following new particles: axigluons with mass between 200 and 870 GeV, excited quarks with mass between 80 and 570 GeV, and color octet technirhos with mass between 320 and 480 GeV.

1 data table

Here UNSPEC refers to axigluons, excited quarks, colour octet technirhos, ngauge bosons (W' and Z') and diquarks (D and Dc). M is the mass of the new particle (axigluon, q*, ...). Measurements are given to the 95% confidence limit.


A Determination of alpha-s in e+ e- annihilation at s**(1/2) = 57.3-GeV

The AMY collaboration Li, Y.K. ; Sagawa, H. ; Bodek, A. ; et al.
Phys.Lett.B 355 (1995) 394-400, 1995.
Inspire Record 406129 DOI 10.17182/hepdata.6546

We present a study of differential two jet ratios in multi-hadronic final states produced by e + e − annihilation in the AMY detector at TRISTAN. The data are compared to the predictions of the next-to-leading logarithm parton-shower (NLL PS) Monte Carlo and the O ( α s 2 ) matrix element QCD models. We determine the strong coupling strength α s (57.3 GeV) = 0.130 ± 0.006.

6 data tables

The data are compared to the predictions of Monte-Carlo.

Using the p-scheme for jet clustering.

Using the E-scheme for jet clustering.

More…

Determination of the strong coupling constant from jet rates in deep inelastic scattering

The H1 collaboration Ahmed, T. ; Aid, S. ; Andreev, V. ; et al.
Phys.Lett.B 346 (1995) 415-425, 1995.
Inspire Record 380945 DOI 10.17182/hepdata.45050

Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2 . It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant α s as a free parameter. The measured value, α s ( M Z 2 ) = 0.123 ± 0.018, is in agreement both with determinations from e + e − annihilation at LEP using the same observable and with the world average.

1 data table

Determination of ALP_S(MZ**2). Error contains both statistics and systematics.


Search for the top quark decaying to a charged Higgs boson in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2667-2671, 1994.
Inspire Record 383998 DOI 10.17182/hepdata.50929

We present the results of a search in p¯p collisions at s=1.8 TeV for the top quark decaying to a charged Higgs boson (H±). We search for dilepton final states from the decay chain tt¯→HH (or HW, or WW) + bb¯→ll+X. In a sample of 19.3 pb−1 collected during 1992-93 with the Collider Detector at Fermilab, we observe 2 events with a background estimation of 3.0 ± 1.0 events. Limits at 95% C.L. in the (Mtop,MH±) plane are presented. For the case Mtop<MW+Mb, we exclude at 95% C.L. the entire (Mtop,MH±) plane for the branching ratio B(H→τν) larger than 75%. We also interpret the results in terms of the parameter tan β of two-Higgs-doublet models.

6 data tables

Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model parameter describing the charged Higgs decay (see text).

Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).

Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).

More…

A Search for excited fermions in electron - proton collisions at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 65 (1995) 627-648, 1995.
Inspire Record 378836 DOI 10.17182/hepdata.45049

A search for excited states of the standard model fermions was performed using the ZEUS detector at the HERA electron-proton collider, operating at a centre of mass energy of 296 GeV. In a sample corresponding to an integrated luminosity of 0.55 pb−1, no evidence was found for any resonant state decaying into final states composed of a fermion and a gauge boson. Limits on the coupling strength times branching ratio of excited fermions are presented for masses between 50 GeV and 250 GeV, extending previous search regions significantly.

1 data table

The cross sections times branching ratio.


Inclusive jet differential cross-sections in photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 342 (1995) 417-432, 1995.
Inspire Record 378838 DOI 10.17182/hepdata.45054

Inclusive jet differential cross sections for the reaction ep → jet + X at Q 2 below 4 GeV 2 have been measured with the ZEUS detector at HERA using an integrated luminosity of 0.55 pb −1 . These cross sections are given in the kinematic region 0.2 < y < 0.85, for jet pseudorapidities in the ep -laboratory range −1 < η jet < 2 and refer to jets at the hadron level with a cone radius of one unit in the η - θ plane. These results correspond to quasi-real photoproduction at centre-of-mass energies in the range 130–270 GeV and, approximately, for jet pseudorapidities in the interval −3 < η jet ( λp CMS) < 0. These measurements cover a new kinematic regime of the partonic structure of the photon, at typical scales up to ∼300 GeV 2 and photon fractional momenta down to x γ ∼ 10 −2 . Leading logarithm parton shower Monte Carlo calculations, which include both resolved and direct processes and use the predictions of currently available parametrisations of the photon parton distributions, describe in general the shape and magnitude of the measured η jet and E t jet distributions.

5 data tables

Second systematic error is uncertainty in the ET scale.

Second systematic error is uncertainty in the ET scale.

Second systematic error is uncertainty in the ET scale.

More…

A Search for jet handedness in hadronic Z0 decays

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.Lett. 74 (1995) 1512-1516, 1995.
Inspire Record 378343 DOI 10.17182/hepdata.19666

We have searched for signatures of polarization in hadronic jets from $Z~0 \rightarrow q \bar{q}$ decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95\% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}

1 data table

Polarized E- beam. Events were classified as being of light or heavy flavors based on impact parameters of charged tracks measured in the vertex detector. Jet handedness are measured for helicity-based and chirality-based analysis (seetext). C=95PCT CL indicates the upper limits at the 95 PCT C.L. on the magnitudes.


W boson + jet angular distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2296-2300, 1994.
Inspire Record 374152 DOI 10.17182/hepdata.42492

The W+jet angular distribution is measured using W→eν events recorded with the Collider Detector at Fermilab (CDF) during the 1988-89 and 1992-93 Tevatron runs. The data agree well with both a leading order and a next-to-leading order theoretical prediction. The shape of the angular distribution is similar to that observed in photon + jet data and significantly different from that observed in dijet data.

2 data tables

Data normalized to 1 in the cos(theta) range -0.6 to 0.6.

Data normalized to 1 in the abs(cos(theta)) range <0.3.


Evidence for color coherence in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.D 50 (1994) 5562-5579, 1994.
Inspire Record 374155 DOI 10.17182/hepdata.42448

Color coherence effects in pp¯ collisions are observed and studied with CDF, the Collider Detector at the Fermilab Tevatron collider. We demonstrate these effects by measuring spatial correlations between soft and leading jets in multijet events. Variables sensitive to interference are identified by comparing the data to the predictions of various shower Monte Carlo programs that are substantially different with respect to the implementation of coherence.

8 data tables

Observed normalised transverse energy distribution of the leading (highest ET) jet.. Data read from plot in the preprint.

Observed normalised transverse energy distribution of the second highest ET jet.. Data read from plot in the preprint.

Observed normalised pseudorapidity distribution of the third highest ET jet.. Data read from plot in the preprint.

More…

QCD studies using a cone based jet finding algorithm for e+ e- collisions at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 63 (1994) 197-212, 1994.
Inspire Record 373000 DOI 10.17182/hepdata.48238

We describe a cone-based jet finding algorithm (similar to that used in\(\bar p\)p experiments), which we have applied to hadronic events recorded using the OPAL detector at LEP. Comparisons are made between jets defined with the cone algorithm and jets found by the “JADE” and “Durham” jet finders usually used ine+e− experiments. Measured jet rates, as a function of the cone size and as a function of the minimum jet energy, have been compared with O(αs2) calculations, from which two complementary measurements\(\alpha _s \left( {M_{Z^0 } } \right)\) have been made. The results are\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.116±0.008 and\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.119±0.008 respectively, where the errors include both experimental and theoretical uncertainties. Measurements are presented of the energy flow inside jets defined using the cone algorithm, and compared with equivalent data from\(\bar p\)p interactions, reported by the CDF collaboration. We find that the jets ine+e− are significantly narrower than those observed in\(\bar p\)p. The main contribution to this effect appears to arise from differences between quark- and gluon-induced jets.

16 data tables

Measured 2 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.

Measured 2 jet production rate as a function of R, the jet cone radius, for a fixed value of the minimum jet energy, EPSILON, of 7 GeV.

Measured 3 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.

More…