A new measurement of the differential cross section and of the analysing power A 0 n of the charge-exchange reaction p − p → n − n at 875 MeV/ c is presented. The A 0 n data cover the entire angular range and constitute a considerable improvement over previously published data, both in the forward and in the backward hemisphere. The cross-section data cover only the backward region, but are unique at this energy. A careful study of the long-term drifts of the apparatus has allowed to fully exploit the good statistics of the data.
Forward hemisphere measurement. Additional systematic error of 4 pct due to target polarization uncertainty.
Backward hemisphere measurement. Additional systematic error of 15 pct.
Differential cross section in the backward hemisphere. Additional systematic error of 15 pct.
A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.
Note that the sytematic uncertainties are approximately 100 pct correlated bin to bin.
We measured the spin asymmetry in the scattering of 100 GeV longitudinally-polarized muons on transversely polarized protons. The asymmetry was found to be compatible with zero in the kinematic range $0.006<x<0.6$, $1<Q~2<30\,\mbox{GeV}~2$. {}From this result we derive the upper limits for the virtual photon--proton asymmetry $A_2$, and for the spin structure function $g_2$. For $x<0.15$, $A_2$ is significantly smaller than its positivity limit $\sqrt{R}$.
No description provided.
Nucleon spin structure function g2.
The cross section for the process e + e − → p p has been measured in the s range 3.6–5.9 GeV 2 by the FENICE experiment at the e + e − Adone storage ring and the proton electromagnetic form factor has been extracted.
Cross section measurement.
Proton form-factor measurement.
The polarization of Lambda0, AntiLambda0, Sigma+ and Xi- inclusively produced in Sigma- induced interactions at 330 GeV has been measured in the experiment WA89 at CERN. This is the first measurement of polarization of baryons produced by a hyperon beam. No polarization of AntiLambda is observed, as was also the case in proton beam data. At transverse momenta of about 1GeV/c Lambda0 and Sigma+ show little polarization, significantly lower than in the proton beam data, while Xi- have a polarization comparable to the polarization of Lambda0 produced in proton beams.
Target Consisted of a copper and a carbon block arranged side by side.
Target Consisted of a copper and a carbon block arranged side by side.
Target Consisted of a copper and a carbon block arranged side by side.
We have measured the photon structure function F 2 γ in the reaction e + e − → e + e − hadrons for average Q 2 values from 5.1 to 338 GeV 2 by using data collected by the TOPAZ detector at TRISTAN. The data have been corrected for detector effects and are compared with theoretical expectations based on QCD. The structure function F 2 γ increases as ln Q 2 , as expected. A sample of events with one or two distinct jets has been identified in the final state. Although two-jet events can be explained solely by the point-like perturbative part, one-jet events require a significant hadron-like part in addition.
No description provided.
No description provided.
No description provided.
We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of $\bar{p}p$ collisions at $\sqrt{s}$= 1.8 TeV with an integrated luminosity of 19.3pb$~{-1}$. We find 12 events consistent with either two $W$ bosons, or a $W$ boson and at least one $b$ jet. The probability that the measured yield is consistent with the background is 0.26\%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. Under this assumption, constrained fits to individual events yield a top quark mass of $174 \pm 10~{+13}_{-12}$ GeV/c$~2$. The $t\bar{t}$ production cross section is measured to be $13.9~{+6.1}_{-4.8}$pb. (Submitted to Physical Review Letters on May 16, 1994).
No description provided.
The W+jet angular distribution is measured using W→eν events recorded with the Collider Detector at Fermilab (CDF) during the 1988-89 and 1992-93 Tevatron runs. The data agree well with both a leading order and a next-to-leading order theoretical prediction. The shape of the angular distribution is similar to that observed in photon + jet data and significantly different from that observed in dijet data.
Data normalized to 1 in the cos(theta) range -0.6 to 0.6.
Data normalized to 1 in the abs(cos(theta)) range <0.3.
Measurements of the inclusive cross-sections forK0 and Λ production in hadronic decays of the Z are presented together with measurements of two-particle correlations within pairs of Λ andK0. The results are compared with predictions from the hadronization models Jetset, based on string fragmentation, and Herwig, based on cluster decays. TheK0 spectrum is found to be harder than predicted by both models, while the Λ spectrum is softer than predicted. The correlation measurements are all reproduced well by Jetset, while Herwig misses some of the qualitative features and overestimates the size of the\(\Lambda \bar \Lambda \) correlation. Finally, the possibility of Bose-Einstein correlation in theKS0KS0 system is discussed.
No description provided.
No description provided.
No description provided.
We report on a sample of Jψ mesons coming from secondary vertices, a characteristic of heavyquark decay, detected in the Fermilab Meson West spectrometer. Based on eight signal events in which a Jψ emerges from a secondary vertex occurring in an air-gap region, we obtain an inclusive bb¯ cross section of 75 ± 31 ± 26 nb/nucleon. This result is compared to recent QCD predictions. We have also observed several events in the exclusive decay modes B±→Jψ+K± and B0→Jψ+K0* in which the B mass is fully reconstructed.
The cross section is multiplied on Br(J/PSI --> MU+ MU-).
No description provided.