We present results on J/ψ production in muon interactions with tin and carbon targets at incident muon energies of 200 and 280 GeV. The ratio of cross sections per nucleon for J/ψ production on tin and carbon, R (Sn/C), is studied as a function of p T 2 , z and x . We find an enhancement for coherent J/ψ production R coh (Sn/C) = 1.54 ± 0.07, a suppression for quasielastic production R qe (Sn/C) = 0.79 ± 0.06 and for inelastic production R in (Sn/C) = 1.13 ± 0.08. The inelastic cross section ratio can be interpreted within the Colour Singlet model as an enhancement of the gluon distribution in tin with respect to that in carbon. The dependence of the ratio on z and p T 2 can explain the discrepancy between the results obtained in previous experiments.
Data for coherent events.
Data for quasielastic events.
Data for inelastic events.
Muon-pair production has been measured in pCu, pU, OCu, OU and SU collisions at 200 GeV per nucleon. The cross sections are compatible with the atomic number dependence ( A proj. A targ. ) α where α =0.91±0.04 for the J/ψ resonance and α =1.01±0.04 for muon pairs produced in the mass continuum between 1.7 and 2.7 GeV/ c 2 .
Cross sections fitted with SIG0*(A(P=1)*A(P=2))** ALPHA. ALPHA is coded here as POWER(N=A*A,YN=SIG).
Cross sections fitted with SIG0*(A(P=1)*A(P=2))** ALPHA. ALPHA is coded here as POWER(N=A*A,YN=SIG).
No description provided.
We have measured inelastic electron-deuteron, electron-proton, and electron-aluminum cross sections at 10° in the kinematic region between elastic deuteron scattering and the second resonance region at six beam energies between 9.8 and 21 GeV. The elastic electron-neutron cross section was extracted from the quasielastic data at Q2=2.5,4.0,6.0,8.0, and 10.0 (GeV/c)2. The ratio of elastic cross sections σnσp falls with increasing Q2 above 6 (GeV/c)2. The inelastic data are compatible either with y scaling (scattering from a single nucleon) or with ξ scaling (scattering from quarks).
Elastic proton cross sections.
No description provided.
No description provided.
Results are presented on the ratio of neutron and proton structure functions, F 2 n / F 2 p , deduced from deep inelastic scattering of muon from hydrogen and deuterium. The data, which were obtained at the CERN muon beam at 90 and 280 GeV incident energy, cover the kinematic range x = 0.002−0.80 and Q 2 = 0.1−190 GeV 2 . The measured structure function ratios have small statistical and systematic errors, particularly at small and intermediate x . The observed Q 2 dependence in the range x = 0.1−0.4 is stronger than predicted by perturbative QCD. From the present data together with results from other experiments it is suggested that the twist-four coefficient for the proton is smaller than that for the neutron for x larger than 0.2.
No description provided.
No description provided.
Merged 90 and 280 GeV data.
The structure function ratiosF2C/F2Li,F2Ca/F2Li andF2Ca/F2C were measured in deep inelastic muonnucleus scattering at an incident muon energy of 90 GeV, covering the kinematic range 0.0085
Overall normalization error of 0.7%, due to uncertainties in target thickness, not included in the table.
Overall normalization error of 0.8%, due to uncertainties in target thickness, not included in the table.
Overall normalization error of 0.5%, due to uncertainties in target thickness, not included in the table.
Longitudinal and transverse momentum spectra of final state hadrons produced in deep-inelastic muon-deuterium scattering at incident muon energy of 490 GeV have been measured up to a hadronic center of mass energy of 30 GeV. The longitudinal distributions agree well with data from earlier muon-nucleon scattering experiments; these distributions tend to increase in steepness as the center of mass energy increases. Comparisons with e + e − data at comparable center of mass energies indicate slight differences. The transverse momentum distributions show an increase in mean p T 2 with an increase in the center of mass energy.
No description provided.
No description provided.
No description provided.
Final data measured with the EMC forward spectrometer are presented on the production of forward charged hadrons in μp and μd scattering at incident beam energies between 100 and 280 GeV. The large statistic of 373 000 events allows a study of the semi-inclusive hadron production as a function ofz,pT2 and 〈pT2〉 in smallQ2,xBj andW bins. Charge multiplicity ratios and differences as a function ofz andxBj are given forp, d andn-targets. From the differences of charge multiplicities the ratio of the valence quark distributions of the protondv(x)/uv(x) is determined for the first time in charged lepton scattering. The Gronau et al. sum rule is tested, the measured sum being 0.31±0.06 stat. ±0.05 syst., compared with the theoretical expectation of 2/7≈0.286. The measured sum corresponds to an absolute value of the ratio of thed andu quark charge of 0.44±0.10 stat.±0.08 syst.
No description provided.
No description provided.
No description provided.
We present the structure function ratiosF2He/F2D,F2C/F2D andF2Ca/F2D measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. The kinematic range 0.0035
No description provided.
No description provided.
No description provided.
Data on multiplicities of charged particles produced in proton-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon are presented. It is shown that the mean multiplicity of negative particles is proportional to the mean number of nucleons participating in the collision both for nucleus-nucleus and proton-nucleus collisions. The apparent consistency of pion multiplicity data with the assumption of an incoherent superposition of nucleon-nucleon collisions is critically discussed.
No description provided.
No description provided.
No description provided.
None
No description provided.
CONTINUUM MUONS ORIGINATE MAINLY FROM VECTOR MESON DECAYS, SEMI-LEPTONIC DECAYS OF D DBAR PAIRS AND FROM DRELL-YAN MECHANISM.
No description provided.