A measurement of off-shell Higgs boson production in the $H^*\to ZZ\to 4\ell$ decay channel is presented. The measurement uses 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the $ZZ\to 4\ell$ decay channel at 68% CL is $0.87^{+0.75}_{-0.54}$ ($1.00^{+1.04}_{-0.95}$). The evidence for off-shell Higgs boson production using the $ZZ\to 4\ell$ decay channel has an observed (expected) significance of $2.5\sigma$ ($1.3\sigma$). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of $0.5\sigma$. When combined with the most recent ATLAS measurement in the $ZZ\to 2\ell 2\nu$ decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of $3.7\sigma$ ($2.4\sigma$). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is $4.3^{+2.7}_{-1.9}$ ($4.1^{+3.5}_{-3.4}$) MeV.
The production cross-section of high-mass $\tau$-lepton pairs is measured as a function of the dilepton visible invariant mass, using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider. The measurement agrees with the predictions of the Standard Model. A fit to the invariant mass distribution is performed as a function of $b$-jet multiplicity, to constrain the non-resonant production of new particles described by an effective field theory or in models containing leptoquarks or $Z'$ bosons that couple preferentially to third-generation fermions. The constraints on new particles improve on previous results, and the constraints on effective operators include those affecting the anomalous magnetic moment of the $\tau$-lepton.
The measured unfolded differential cross sections.
The combined covariance matrix for the differential cross-section distribution.
Statistical covariance matrix for the differential cross-section distribution.
A search for the production of three Higgs bosons ($HHH$) in the $b\bar{b}b\bar{b}b\bar{b}$ final state is presented. The search uses $126~\text{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis targets both non-resonant and resonant production of $HHH$. The resonant interpretations primarily consider a cascade decay topology of $X\rightarrow SH\rightarrow HHH$ with masses of the new scalars $X$ and $S$ up to 1.5 TeV and 1 TeV, respectively. In addition to scenarios where $S$ is off-shell, the non-resonant interpretation includes a search for standard model (SM) $HHH$ production, with limits on the tri-linear and quartic Higgs self-coupling set. No evidence for $HHH$ production is observed. An upper limit of 59 fb is set, at 95% confidence level, on the cross-section for Standard-Model $HHH$ production.
A search for pair-production of vector-like leptons is presented, considering their decays into a third-generation Standard Model (SM) quark and a vector leptoquark ($U_1$) as predicted by an ultraviolet-complete extension of the SM, referred to as the '4321' model. Given the assumed decay of $U_1$ into third-generation SM fermions, the final state can contain multiple $\tau$-leptons and $b$-quarks. This search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. No significant excess above the SM background prediction is observed, and 95% confidence level limits on the cross-section times branching ratio are derived as a function of the vector-like lepton mass. A lower observed (expected) limit of 910 GeV (970 GeV) is set on the vector-like lepton mass. Additionally, the results are interpreted for a supersymmetric model with an $R$-parity violating coupling to the third-generation quarks and leptons. Lower observed (expected) limits are obtained on the higgsino mass at 880 GeV (940 GeV) and on the wino mass at 1170 GeV (1170 GeV).
Observed (solid line with markers) and expected (dashed line) 95% CL upper limits on the VLL pair production cross-section (σ<sub>VLL</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>VLL</sub>. The limits presented in black lines are obtained after combining all five signal regions. The inner green (outer yellow) band corresponds to the ±1 σ (±2 σ) uncertainty around the combined expected limit. The 95% CL expected upper limits in the three individual channels (1τ<sub>had</sub> ≥3b MST, 1τ<sub>had</sub> ≥3b BJET and ≥2τ<sub>had</sub> ≥3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the VLL pair production cross-section at NLO in QCD.
Observed (solid line with markers) and expected (dashed line) 95% CL upper limits on the higgsino pair production cross-section (σ<sub>higgsino</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>higgsino</sub>. The limits presented in black lines are obtained after combining all five signal regions. The inner green (outer yellow) band corresponds to the ±1 σ (±2 σ) uncertainty around the combined expected limit. The 95% CL expected upper limits in the three individual channels (1τ<sub>had</sub> ≥3b MST, 1τ<sub>had</sub> ≥3b BJET and ≥2τ<sub>had</sub> ≥3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the higgsino pair production cross-section at NLO in QCD.
Observed (solid line with markers) and expected (dashed line) 95% CL upper limits on the wino pair production cross-section (σ<sub>wino</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>wino</sub>. The limits presented in black lines are obtained after combining all five signal regions. The surrounding inner green (outer yellow) band corresponds to the ±1 σ (±2 σ) uncertainty around the combined expected limit. The 95% CL expected upper limits in the three individual channels (1τ<sub>had</sub> ≥3b MST, 1τ<sub>had</sub> ≥3b BJET and ≥2τ<sub>had</sub> ≥3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the wino pair production cross-section at NLO in QCD.
This article reports on a search for dijet resonances using $132$ fb$^{-1}$ of $pp$ collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS detector at the Large Hadron Collider. The search is performed solely on jets reconstructed within the ATLAS trigger to overcome bandwidth limitations imposed on conventional single-jet triggers, which would otherwise reject data from decays of sub-TeV dijet resonances. Collision events with two jets satisfying transverse momentum thresholds of $p_{\textrm{T}} \ge 85$ GeV and jet rapidity separation of $|y^{*}|<0.6$ are analysed for dijet resonances with invariant masses from $375$ to $1800$ GeV. A data-driven background estimate is used to model the dijet mass distribution from multijet processes. No significant excess above the expected background is observed. Upper limits are set at $95\%$ confidence level on coupling values for a benchmark leptophobic axial-vector $Z^{\prime}$ model and on the production cross-section for a new resonance contributing a Gaussian-distributed line-shape to the dijet mass distribution.
Observed $m_{jj}$ distribution for the J50 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.
Observed $m_{jj}$ distribution for the J100 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.
Observed 95% $\text{CL}_\text{S}$ upper limits on the production cross-section times acceptance times branching ratio to jets, $\sigma \cdot A \cdot \text{BR}$, of Gaussian-shaped signals of 5%, 10%, and 15% width relative to their peak mass, $m_G$. Also included are the corresponding expected upper limits predicted for the case the $m_{jj}$ distribution is observed to be identical to the background prediction in each bin and the $1\sigma$ and $2\sigma$ envelopes of outcomes expected for Poisson fluctuations around the background expectation. Limits are derived from the J50 signal region.
This article presents a search for a heavy charged Higgs boson produced in association with a top quark and a bottom quark, and decaying into a $W$ boson and a $125$ GeV Higgs boson $h$. The search is performed in final states with one charged lepton, missing transverse momentum, and jets using proton-proton collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector during Run 2 of the LHC at CERN. This data set corresponds to a total integrated luminosity of 140 fb$^{-1}$. The search is conducted by examining the reconstructed invariant mass distribution of the $Wh$ candidates for evidence of a localised excess in the charged Higgs boson mass range from $250$ GeV to $3$ TeV. No significant excess is observed and 95% confidence-level upper limits between $2.8$ pb and $1.2$ fb are placed on the production cross-section times branching ratio for charged Higgs bosons decaying into $Wh$.
Distributions of the mWh observable in the low-purity signal regions of the resolved qqbb 5jex3bex event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the low-purity signal regions of the resolved qqbb 5jex4bin event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
Distributions of the mWh observable in the low-purity signal regions of the resolved qqbb 6jin3bex event categories. The term ‘Others’ summarises events from tHjb, tWh, tttt, and SM Vh production. The distributions are presented after a background-only maximum-likelihood fit to data. The individual background uncertainty does not take into account the possible correlations between the nuisance parameter. The expected signal contribution assuming $m_{H^{\pm}}$ = 700 GeV, normalised to the expected limit of the cross-section times branching ratio ($\sigma_{sig}$ × B) of 0.064 pb, is shown as a dashed histogram.
This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of 140 $fb^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
A search for events with one displaced vertex from long-lived particles using data collected by the ATLAS detector at the Large Hadron Collider is presented, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded in 2015-2018. The search employs techniques for reconstructing vertices of long-lived particles decaying into hadronic jets in the muon spectrometer displaced between 3 m and 14 m from the primary interaction vertex. The observed number of events is consistent with the expected background and limits for several benchmark signals are determined. A scalar-portal model and a Higgs-boson-portal baryogenesis model are considered. A dedicated analysis channel is employed to target Z-boson associated long-lived particle production, including an axion-like particle and a dark photon model. For the Higgs boson model, branching fractions above 1% are excluded at 95% confidence level for long-lived particle proper decay lengths ranging from 5 cm to 40 m. For the photo-phobic axion-like particle model considered, this search produces the strongest limits to date for proper decay lengths greater than $\mathcal{O}(10)$ cm.
Observed 95% CL limits on (σ/σggH)×B for all Higgs boson portal mediator samples where the cross-section is normalized to the SM Higgs boson gluon–gluon fusion production cross-section, σggH = 48.61 pb [97]. The observed limits are consistent with the expected ones within the uncertainties.
Observed 95% CL limits on (σ/σggH)×B for all Higgs boson portal mediator samples where the cross-section is normalized to the SM Higgs boson gluon–gluon fusion production cross-section, σggH = 48.61 pb [97]. The observed limits are consistent with the expected ones within the uncertainties.
Summary of the limits for the Z+ALP model. Comparison between observed and expected 95% CL upper limits on the Z+ALP production cross-section σ×Ba →gg for ma = 40 GeV.
Charged Higgs bosons produced either in top-quark decays or in association with a top-quark, subsequently decaying via $H^{\pm} \to \tau^{\pm}\nu_{\tau}$, are searched for in 140 $\text{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. Depending on whether the top-quark produced together with the $H^{\pm}$ decays hadronically or semi-leptonically, the search targets $\tau$+jets or $\tau$+lepton final states, in both cases with a $\tau$-lepton decaying into a neutrino and hadrons. No significant excess over the Standard Model background expectation is observed. For the mass range of $80 \leq m_{H^{\pm}} \leq 3000$ GeV, upper limits at 95% confidence level are set on the production cross-section of the charged Higgs boson times the branching fraction $\mathrm{\cal{B}}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$ in the range 4.5 pb-0.4 fb. In the mass range 80-160 GeV, assuming the Standard Model cross-section for $t\bar{t}$ production, this corresponds to upper limits between 0.27% and 0.02% on $\mathrm{\cal{B}}(t\to bH^{\pm}) \times \mathrm{\cal{B}}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$.
A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics, with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant production of a $Z'$ mediator. The ATLAS experiment dataset collected at the Large Hadron Collider from 2015 to 2018 is used, consisting of proton-proton collisions at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 140 fb$^{-1}$. The $Z'$ mediator is considered to decay to two dark quarks, which each hadronize and decay to showers containing both dark and Standard Model particles, producing a topology of interacting and non-interacting particles within a jet known as ``semi-visible". Machine learning methods are used to select these dark showers and reject the dominant background of mismeasured multijet events, including an anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A resonance search is performed by fitting the transverse mass spectrum based on a functional form background estimation. No significant excess over the expected background is observed. Results are presented as limits on the production cross section of semi-visible jet signals, parameterized by the fraction of invisible particles in the decay and the $Z'$ mass, and by quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.