Showing 10 of 939 results
Studies of the fragmentation of jets into charged particles in heavy-ion collisions can provide information about the mechanism of jet-quenching by the hot and dense QCD matter created in such collisions, the quark-gluon plasma. This paper presents a measurement of the angular distribution of charged particles around the jet axis in $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV Pb+Pb and $pp$ collisions, using the ATLAS detector at the LHC. The Pb+Pb and $pp$ data sets have integrated luminosities of 0.49 nb$^{-1}$ and 25 pb$^{-1}$, respectively. The measurement is performed for jets reconstructed with the anti-$k_{t}$ algorithm with radius parameter $R = 0.4$ and is extended to an angular distance of $r= 0.8$ from the jet axis. Results are presented as a function of Pb+Pb collision centrality and distance from the jet axis for charged particles with transverse momenta in the 1$-$63 GeV range, matched to jets with transverse momenta in the 126$-$316 GeV range and an absolute value of jet rapidity of less than 1.7. Modifications to the measured distributions are quantified by taking a ratio to the measurements in $pp$ collisions. Yields of charged particles with transverse momenta below 4 GeV are observed to be increasingly enhanced as a function of angular distance from the jet axis, reaching a maximum at $r=0.6$. Charged particles with transverse momenta above 4 GeV have an enhanced yield in Pb+Pb collisions in the jet core for angular distances up to $r = 0.05$ from the jet axis, with a suppression at larger distances.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_PbPb The charged particle distributions around jets as a function of distance from the jet axis in PbPb collisions at 5.02 TeV for different centrality, track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
D(pT,r)_pp The charged particle distributions around jets as a function of distance from the jet axis in pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
R_D(pT,r) The ratios of charged particle distributions around jets as a function of distance from the jet axis in different centrality intervals of PbPb and pp collisions at 5.02 TeV for different track pT and jet pT ranges.
Multi-particle azimuthal cumulants are measured as a function of centrality and transverse momentum using 470 $\mu$b$^{-1}$ of Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ATLAS detector at the LHC. These cumulants provide information on the event-by-event fluctuations of harmonic flow coefficients $v_n$ and correlated fluctuations between two harmonics $v_n$ and $v_m$. For the first time, a non-zero four-particle cumulant is observed for dipolar flow, $v_1$. The four-particle cumulants for elliptic flow, $v_2$, and triangular flow, $v_3$, exhibit a strong centrality dependence and change sign in ultra-central collisions. This sign change is consistent with significant non-Gaussian fluctuations in $v_2$ and $v_3$. The four-particle cumulant for quadrangular flow, $v_4$, is found to change sign in mid-central collisions. Correlations between two harmonics are studied with three- and four-particle mixed-harmonic cumulants, which indicate an anti-correlation between $v_2$ and $v_3$, and a positive correlation between $v_2$ and $v_4$. These correlations decrease in strength towards central collisions and either approach zero or change sign in ultra-central collisions. To investigate the possible flow fluctuations arising from intrinsic centrality or volume fluctuations, the results are compared between two different event classes used for centrality definitions. In peripheral and mid-central collisions where the cumulant signals are large, only small differences are observed. In ultra-central collisions, the differences are much larger and transverse momentum dependent. These results provide new information to disentangle flow fluctuations from the initial and final states, as well as new insights on the influence of centrality fluctuations.
NchRec v.s. Et
<NchRec> w.r.t. Et
<Et> w.r.t. NchRec
Et distribution
NchRec distribution
v_2{2}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2}, 3-subevent, 1.0<pT<5.0 GeV
v_2{2}, 3-subevent, 1.5<pT<5.0 GeV
v_2{2}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2}, 3-subevent, 1.0<pT<5.0 GeV
v_3{2}, 3-subevent, 1.5<pT<5.0 GeV
v_3{2}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2}, 3-subevent, 1.0<pT<5.0 GeV
v_4{2}, 3-subevent, 1.5<pT<5.0 GeV
v_4{2}, 3-subevent, 2.0<pT<5.0 GeV
nc_2{4}, standard, 0.5<pT<5.0 GeV
nc_2{4}, standard, 1.0<pT<5.0 GeV
nc_2{4}, standard, 1.5<pT<5.0 GeV
nc_2{4}, standard, 2.0<pT<5.0 GeV
nc_3{4}, standard, 0.5<pT<5.0 GeV
nc_3{4}, standard, 1.0<pT<5.0 GeV
nc_3{4}, standard, 1.5<pT<5.0 GeV
nc_3{4}, standard, 2.0<pT<5.0 GeV
nc_4{4}, standard, 0.5<pT<5.0 GeV
nc_4{4}, standard, 1.0<pT<5.0 GeV
nc_4{4}, standard, 1.5<pT<5.0 GeV
nc_4{4}, standard, 2.0<pT<5.0 GeV
nc_2{4}, 3-subevent, 0.5<pT<5.0 GeV
nc_2{4}, 3-subevent, 1.0<pT<5.0 GeV
nc_2{4}, 3-subevent, 1.5<pT<5.0 GeV
nc_2{4}, 3-subevent, 2.0<pT<5.0 GeV
nc_3{4}, 3-subevent, 0.5<pT<5.0 GeV
nc_3{4}, 3-subevent, 1.0<pT<5.0 GeV
nc_3{4}, 3-subevent, 1.5<pT<5.0 GeV
nc_3{4}, 3-subevent, 2.0<pT<5.0 GeV
nc_4{4}, 3-subevent, 0.5<pT<5.0 GeV
nc_4{4}, 3-subevent, 1.0<pT<5.0 GeV
nc_4{4}, 3-subevent, 1.5<pT<5.0 GeV
nc_4{4}, 3-subevent, 2.0<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 0.5<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 1.0<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 1.5<pT<5.0 GeV
v_2{4} / v_2{2}, standard, 2.0<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 0.5<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 1.0<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 1.5<pT<5.0 GeV
v_3{4} / v_3{2}, standard, 2.0<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 0.5<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 1.0<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 1.5<pT<5.0 GeV
v_4{4} / v_4{2}, standard, 2.0<pT<5.0 GeV
nc_2{6}, standard, 0.5<pT<5.0 GeV
nc_2{6}, standard, 1.0<pT<5.0 GeV
nc_2{6}, standard, 1.5<pT<5.0 GeV
nc_2{6}, standard, 2.0<pT<5.0 GeV
nc_3{6}, standard, 0.5<pT<5.0 GeV
nc_3{6}, standard, 1.0<pT<5.0 GeV
nc_3{6}, standard, 1.5<pT<5.0 GeV
nc_3{6}, standard, 2.0<pT<5.0 GeV
nc_4{6}, standard, 0.5<pT<5.0 GeV
nc_4{6}, standard, 1.0<pT<5.0 GeV
nc_4{6}, standard, 1.5<pT<5.0 GeV
nc_4{6}, standard, 2.0<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 0.5<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 1.0<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 1.5<pT<5.0 GeV
v_2{6} / v_2{4}, standard, 2.0<pT<5.0 GeV
c_1{4}, standard, 0.5<pT<5.0 GeV
c_1{4}, standard, 1.0<pT<5.0 GeV
c_1{4}, standard, 1.5<pT<5.0 GeV
c_1{4}, standard, 2.0<pT<5.0 GeV
c_1{4}, 3-subevent, 0.5<pT<5.0 GeV
c_1{4}, 3-subevent, 1.0<pT<5.0 GeV
c_1{4}, 3-subevent, 1.5<pT<5.0 GeV
c_1{4}, 3-subevent, 2.0<pT<5.0 GeV
v_1{4}, standard, 1.5<pT<5.0 GeV
v_1{4}, standard, 2.0<pT<5.0 GeV
v_1{4}, 3-subevent, 1.5<pT<5.0 GeV
v_1{4}, 3-subevent, 2.0<pT<5.0 GeV
nsc_2_3{4}, standard, 0.5<pT<5.0 GeV
nsc_2_3{4}, standard, 1.0<pT<5.0 GeV
nsc_2_3{4}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 0.5<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 1.0<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 1.5<pT<5.0 GeV
nsc_2_3{4}, 3-subevent, 2.0<pT<5.0 GeV
nsc_2_4{4}, standard, 0.5<pT<5.0 GeV
nsc_2_4{4}, standard, 1.0<pT<5.0 GeV
nsc_2_4{4}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4}, standard, 2.0<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 0.5<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 1.0<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 1.5<pT<5.0 GeV
nsc_2_4{4}, 3-subevent, 2.0<pT<5.0 GeV
nac_2{3}, standard, 0.5<pT<5.0 GeV
nac_2{3}, standard, 1.0<pT<5.0 GeV
nac_2{3}, standard, 1.5<pT<5.0 GeV
nac_2{3}, standard, 2.0<pT<5.0 GeV
nac_2{3}, 3-subevent, 0.5<pT<5.0 GeV
nac_2{3}, 3-subevent, 1.0<pT<5.0 GeV
nac_2{3}, 3-subevent, 1.5<pT<5.0 GeV
nac_2{3}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 1.0<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 1.5<pT<5.0 GeV
v_2{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 1.0<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 1.5<pT<5.0 GeV
v_3{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 1.0<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 1.5<pT<5.0 GeV
v_4{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 1.0<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 1.5<pT<5.0 GeV
v_2{2, Nch}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 1.0<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 1.5<pT<5.0 GeV
v_3{2, Nch}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 1.0<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 1.5<pT<5.0 GeV
v_4{2, Nch}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_2{2, Nch} / v_2{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_3{2, Nch} / v_3{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 0.5<pT<5.0 GeV
v_4{2, Nch} / v_4{2, Et}, 3-subevent, 2.0<pT<5.0 GeV
nc_2{4, Et}, standard, 0.5<pT<5.0 GeV
nc_2{4, Et}, standard, 1.0<pT<5.0 GeV
nc_2{4, Et}, standard, 1.5<pT<5.0 GeV
nc_2{4, Et}, standard, 2.0<pT<5.0 GeV
nc_3{4, Et}, standard, 0.5<pT<5.0 GeV
nc_3{4, Et}, standard, 1.0<pT<5.0 GeV
nc_3{4, Et}, standard, 1.5<pT<5.0 GeV
nc_3{4, Et}, standard, 2.0<pT<5.0 GeV
nc_4{4, Et}, standard, 0.5<pT<5.0 GeV
nc_4{4, Et}, standard, 1.0<pT<5.0 GeV
nc_4{4, Et}, standard, 1.5<pT<5.0 GeV
nc_4{4, Et}, standard, 2.0<pT<5.0 GeV
nc_2{4, Nch}, standard, 0.5<pT<5.0 GeV
nc_2{4, Nch}, standard, 1.0<pT<5.0 GeV
nc_2{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_2{4, Nch}, standard, 2.0<pT<5.0 GeV
nc_3{4, Nch}, standard, 0.5<pT<5.0 GeV
nc_3{4, Nch}, standard, 1.0<pT<5.0 GeV
nc_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_3{4, Nch}, standard, 2.0<pT<5.0 GeV
nc_4{4, Nch}, standard, 0.5<pT<5.0 GeV
nc_4{4, Nch}, standard, 1.0<pT<5.0 GeV
nc_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_4{4, Nch}, standard, 2.0<pT<5.0 GeV
nc_2{4, Et}, standard, 1.5<pT<5.0 GeV
nc_2{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_3{4, Et}, standard, 1.5<pT<5.0 GeV
nc_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_4{4, Et}, standard, 1.5<pT<5.0 GeV
nc_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nc_2{6, Et}, standard, 0.5<pT<5.0 GeV
nc_2{6, Et}, standard, 1.0<pT<5.0 GeV
nc_2{6, Et}, standard, 1.5<pT<5.0 GeV
nc_2{6, Et}, standard, 2.0<pT<5.0 GeV
nc_2{6, Nch}, standard, 0.5<pT<5.0 GeV
nc_2{6, Nch}, standard, 1.0<pT<5.0 GeV
nc_2{6, Nch}, standard, 1.5<pT<5.0 GeV
nc_2{6, Nch}, standard, 2.0<pT<5.0 GeV
nc_2{6, Et}, standard, 1.5<pT<5.0 GeV
nc_2{6, Nch}, standard, 1.5<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 0.5<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 1.0<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 1.5<pT<5.0 GeV
v_2{6, Et} / v_2{4, Et}, standard, 2.0<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 0.5<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 1.0<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 1.5<pT<5.0 GeV
v_2{6, Nch} / v_2{4, Nch}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 0.5<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 1.0<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 2.0<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 0.5<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 1.0<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 2.0<pT<5.0 GeV
nac_2{3, Et}, standard, 0.5<pT<5.0 GeV
nac_2{3, Et}, standard, 1.0<pT<5.0 GeV
nac_2{3, Et}, standard, 1.5<pT<5.0 GeV
nac_2{3, Et}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 0.5<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 1.0<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 2.0<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 0.5<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 1.0<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 2.0<pT<5.0 GeV
nac_2{3, Nch}, standard, 0.5<pT<5.0 GeV
nac_2{3, Nch}, standard, 1.0<pT<5.0 GeV
nac_2{3, Nch}, standard, 1.5<pT<5.0 GeV
nac_2{3, Nch}, standard, 2.0<pT<5.0 GeV
nsc_2_3{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_3{4, Nch}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Et}, standard, 1.5<pT<5.0 GeV
nsc_2_4{4, Nch}, standard, 1.5<pT<5.0 GeV
nac_2{3, Et}, standard, 1.5<pT<5.0 GeV
nac_2{3, Nch}, standard, 1.5<pT<5.0 GeV
v_2{4}, standard, 0.5<pT<5.0 GeV
v_2{4}, standard, 1.0<pT<5.0 GeV
v_2{4}, standard, 1.5<pT<5.0 GeV
v_2{4}, standard, 2.0<pT<5.0 GeV
v_2{4, Et}, standard, 0.5<pT<5.0 GeV
v_2{4, Et}, standard, 1.0<pT<5.0 GeV
v_2{4, Et}, standard, 1.5<pT<5.0 GeV
v_2{4, Et}, standard, 2.0<pT<5.0 GeV
v_2{4, Nch}, standard, 0.5<pT<5.0 GeV
v_2{4, Nch}, standard, 1.0<pT<5.0 GeV
v_2{4, Nch}, standard, 1.5<pT<5.0 GeV
v_2{4, Nch}, standard, 2.0<pT<5.0 GeV
v_3{4}, standard, 0.5<pT<5.0 GeV
v_3{4}, standard, 1.0<pT<5.0 GeV
v_3{4}, standard, 1.5<pT<5.0 GeV
v_3{4}, standard, 2.0<pT<5.0 GeV
v_3{4, Et}, standard, 0.5<pT<5.0 GeV
v_3{4, Et}, standard, 1.0<pT<5.0 GeV
v_3{4, Et}, standard, 1.5<pT<5.0 GeV
v_3{4, Et}, standard, 2.0<pT<5.0 GeV
v_3{4, Nch}, standard, 0.5<pT<5.0 GeV
v_3{4, Nch}, standard, 1.0<pT<5.0 GeV
v_3{4, Nch}, standard, 1.5<pT<5.0 GeV
v_3{4, Nch}, standard, 2.0<pT<5.0 GeV
v_4{4}, standard, 0.5<pT<5.0 GeV
v_4{4}, standard, 1.0<pT<5.0 GeV
v_4{4}, standard, 1.5<pT<5.0 GeV
v_4{4}, standard, 2.0<pT<5.0 GeV
v_4{4, Et}, standard, 0.5<pT<5.0 GeV
v_4{4, Et}, standard, 1.0<pT<5.0 GeV
v_4{4, Et}, standard, 1.5<pT<5.0 GeV
v_4{4, Et}, standard, 2.0<pT<5.0 GeV
v_4{4, Nch}, standard, 0.5<pT<5.0 GeV
v_4{4, Nch}, standard, 1.0<pT<5.0 GeV
v_4{4, Nch}, standard, 1.5<pT<5.0 GeV
v_4{4, Nch}, standard, 2.0<pT<5.0 GeV
v_2{6}, standard, 0.5<pT<5.0 GeV
v_2{6}, standard, 1.0<pT<5.0 GeV
v_2{6}, standard, 1.5<pT<5.0 GeV
v_2{6}, standard, 2.0<pT<5.0 GeV
v_2{6, Et}, standard, 0.5<pT<5.0 GeV
v_2{6, Et}, standard, 1.0<pT<5.0 GeV
v_2{6, Et}, standard, 1.5<pT<5.0 GeV
v_2{6, Et}, standard, 2.0<pT<5.0 GeV
v_2{6, Nch}, standard, 0.5<pT<5.0 GeV
v_2{6, Nch}, standard, 1.0<pT<5.0 GeV
v_2{6, Nch}, standard, 1.5<pT<5.0 GeV
v_2{6, Nch}, standard, 2.0<pT<5.0 GeV
sc_2_3{4}, standard, 0.5<pT<5.0 GeV
sc_2_3{4}, standard, 1.0<pT<5.0 GeV
sc_2_3{4}, standard, 1.5<pT<5.0 GeV
sc_2_3{4}, standard, 2.0<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 0.5<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 1.0<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 1.5<pT<5.0 GeV
sc_2_3{4}, 3-subevent, 2.0<pT<5.0 GeV
sc_2_4{4}, standard, 0.5<pT<5.0 GeV
sc_2_4{4}, standard, 1.0<pT<5.0 GeV
sc_2_4{4}, standard, 1.5<pT<5.0 GeV
sc_2_4{4}, standard, 2.0<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 0.5<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 1.0<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 1.5<pT<5.0 GeV
sc_2_4{4}, 3-subevent, 2.0<pT<5.0 GeV
ac_2{3}, standard, 0.5<pT<5.0 GeV
ac_2{3}, standard, 1.0<pT<5.0 GeV
ac_2{3}, standard, 1.5<pT<5.0 GeV
ac_2{3}, standard, 2.0<pT<5.0 GeV
ac_2{3}, 3-subevent, 0.5<pT<5.0 GeV
ac_2{3}, 3-subevent, 1.0<pT<5.0 GeV
ac_2{3}, 3-subevent, 1.5<pT<5.0 GeV
ac_2{3}, 3-subevent, 2.0<pT<5.0 GeV
Measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV are presented using a data sample corresponding to 0.49 $\mathrm{nb}^{-1}$ integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for "ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, $v_{2}-v_{7}$, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics $v_{n}$ over wide ranges of the transverse momentum, 0.5 $
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-1%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 70-80%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 5-10%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 20-30%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 30-40%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 40-50%
The V7 harmonic measured with the scalar product method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V2 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V3 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V4 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 70-80%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V5 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 0-5%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 5-10%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 10-20%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 20-30%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 30-40%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 40-50%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 50-60%
The V6 harmonic measured with the two particle correlation method as a funtion of transverse momentum in centrality bin 60-70%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V6{SP} over V6{EP} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V2{SP} over V2{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V3{SP} over V3{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V4{SP} over V4{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V5{SP} over V5{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V6{SP} over V6{EP} as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V2{SP} over V2{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V3{SP} over V3{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V4{SP} over V4{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 0-5%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 20-30%
The ratio of V5{SP} over V5{2PC} as a funtion of transverse momentum in centrality bin 40-50%
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V2 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V3 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V4 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V5 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 0-5%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 20-30%. PT binning matched to RUN1.
The V6 harmonic measured with the event plane method as a funtion of transverse momentum in centrality bin 40-50%. PT binning matched to RUN1.
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 60-70%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 0.8 < PT < 1 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-0.1%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V5 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V6 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 60-70%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 0-5%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 10-20%
The V7 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 2 < PT < 3 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 60-70%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V3 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-0.1%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 0-5%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 10-20%
The V4 harmonic measured with the scalar product method as a funtion of pseudorapidity for transverse momentum range 7 < PT < 60 GeV in centrality bin 30-40%
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V2 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 0.8 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.8 < PT < 1 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 1 < PT < 2 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 2 < PT < 4 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 4 < PT < 8 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 8 < PT < 60 GeV
The V3 harmonic measured with the scalar product method as a funtion of MEAN(Npart) integrated over 0.5 < PT < 60 GeV
Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and $pp$ collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of $208~\mathrm{\mu b}^{-1}$ and $38~\mathrm{\mu b^{-1}}$, respectively, and $pp$ data with a sampled integrated luminosity of $1.17~\mathrm{pb}^{-1}$ were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in $pp$ collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval $|\eta| < 2$. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays.
The inclusive production rates of isolated, prompt photons in $p$+Pb collisions at $\sqrt{s_\mathrm{NN}} = 8.16$ TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb$^{-1}$ recorded in 2016. The cross-section and nuclear modification factor $R_{p\mathrm{Pb}}$ are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and $R_{p\mathrm{Pb}}$ values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.
A search for new resonances decaying into jets containing b-hadrons in $pp$ collisions with the ATLAS detector at the LHC is presented in the dijet mass range from 0.57 TeV to 7 TeV. The dataset corresponds to an integrated luminosity of up to 36.1 fb$^{-1}$ collected in 2015 and 2016 at $\sqrt{s} = 13$ TeV. No evidence of a significant excess of events above the smooth background shape is found. Upper cross-section limits and lower limits on the corresponding signal mass parameters for several types of signal hypotheses are provided at 95% CL. In addition, 95% CL upper limits are set on the cross-sections for new processes that would produce Gaussian-shaped signals in the di-b-jet mass distributions.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for both single b-tagged and double b-tagged categories. The efficiencies are shown for simulated event samples corresponding to seven different b and Z' resonance masses in the high-mass region.
The per-event b-tagging efficiencies after the event selection, as a function of the reconstructed invariant mass, for double b-tagged category. The efficiencies are shown for simulated event samples corresponding to four different Z' resonance masses in the low-mass region. The efficiencies of identifying an event with two b-jets at trigger level only (Online) and when requiring offline confirmation (Online+offline) are shown.
Dijet mass spectra after the background only fit with the background prediction in the inclusive 1-b-tag high-mass region.
Dijet mass spectra after the background only fit with the background prediction in the high-mass region with two b-tags.
Dijet mass spectra after the background only fit with the background prediction in the low-mass region with two b-tags.
The online b-tagging efficiency with respect to the offline b-tagging efficiency as a function of pT. The b-tagging online and offline working points correspond to an efficiency of 60% and 70%, respectively.
Observed and expected 95% credibility-level upper limits on the cross-section for the b* model in the high-mass region with inclusive b-jet selection.
Observed and expected 95% credibility-level upper limits on the cross-section times branching ratio for the SSM and leptophobic Z' models in the low- and high-mass region with two b-tags selection.
Observed and expected 95% credibility-level upper limits on the cross-section for DM Z' models in the low-mass region with two b-tags selection. The Z' is expected to decay to all five quark flavors other than the top quark and the mediator to SM quark coupling (gSM) equal to 0.1 is assumed.
Observed and expected 95% credibility-level upper limits on the cross-section times branching ratio for DM Z'->bb models in the high-mass region with two b-tags selection. The Z' is expected to decay to bb only and the mediator to SM quark coupling (gSM) equal to 0.25 is assumed.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances with intrinsic width smaller than the detector resolution. The width of the Gaussian reconstructed shape is dominated by the dijet mass resolution. The table shows the limits obtained from the high-mass inclusive one b-tag selection.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances with intrinsic width smaller than the detector resolution. The width of the Gaussian reconstructed shape is dominated by the dijet mass resolution. The table shows the limits obtained from the combined low- and high-mass two b-tags selection.
The mass distributions for the inclusive one b-tagged selection and two b-tagged selection using an integrated luminosity of 36.1 $fb^{-1}$. The inclusive one b-tagged Pythia8 MC distribution is normalized to the inclusive one b-tagged data. The two b-tagged Pythia8 MC distribution is normalized to the two b-tagged data. The systematic uncertainty band is dominated by the b-tagging scale factor and the b-jet energy scale.
Signal acceptance times efficiency for inclusive 1 b-tag and 2 b-tag categories as a function of the simulated b* and the Z' masses.
Signal acceptance times efficiency for 2 b-tag categories as a function of the simulated Z' masses.
The flavor composition of the simulated dijet background as a function of dijet mass before tagging. The fraction of the six combinations of the b-jet , c-jet and light-flavor jet are shown. All offline selections are applied.
The flavor composition of the simulated dijet background as a function of dijet mass with inclusive one b-tag. The fraction of the six combinations of the b-jet , c-jet and light-flavor jet are shown. All offline selections are applied.
The flavor composition of the simulated dijet background as a function of dijet mass with two b-tags. The fraction of the six combinations of the b-jet , c-jet and light-flavor jet are shown. All offline selections are applied.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 3%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 7%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 10%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the inclusive b-jet selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 15%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 3%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 7%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 10%.
Observed and expected 95% credibility-level upper limits on cross section times acceptance times branching ratio of X --> bb, including kinematic acceptance and b-tagging efficiencies, for resonances exhibiting a generic Gaussian shape at particle level. The table shows the limits obtained from the combined low- and high-mass two b-tags selection. The limits corresponding to Gaussian-shaped resonances with width of Γ(X)/m(X) = 15%.
A search is presented for the pair production of heavy vector-like $B$ quarks, primarily targeting $B$ quark decays into a $W$ boson and a top quark. The search is based on $36.1$ $fb^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets final state, characterised by a high-transverse-momentum isolated electron or muon, large missing transverse momentum, and multiple jets, of which at least one is $b$-tagged. No significant deviation from the Standard Model expectation is observed. The 95% confidence level lower limit on the $B$ mass is 1350 GeV assuming a 100% branching ratio to $Wt$. In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. This search is also sensitive to a heavy vector-like $B$ quark decaying into other final states ($Zb$ and $Hb$) and thus mass limits on $B$ production are set as a function of the decay branching ratios. The 100% branching ratio limits are found to be also applicable to heavy vector-like $X$ production, with charge $+$5/3, that decay into $Wt$.
The hadronically decaying VLB candidate mass in the RECOSR region after the maximum likelihood fit in the two signal regions overlayed with the pre-fit VLB signal
The BDT discriminant in the BDTSR region after the maximum likelihood fit in the two signal regions overlayed with the pre-fit VLB signal
Expected and observed upper limits at the 95% CL on the BB cross section as a function of B quark mass under the assumption of BR(B->Wt)=1.
Expected and observed upper limits at the 95% CL on the BB cross section as a function of B quark mass in the SU(2) singlet scenario.
Expected and observed 95% CL lower limits on the mass of the B quark in the branching ratio plane of BR(B->Wt) versus BR(B->Hb).
A search for high-mass resonances decaying to $\tau\nu$ using proton-proton collisions at $\sqrt{s}$ = 13 TeV produced by the Large Hadron Collider is presented. Only $\tau$-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. No statistically significant excess above the Standard Model expectation is observed; model-independent upper limits are set on the visible $\tau\nu$ production cross section. Heavy $W^{\prime}$ bosons with masses less than 3.7 TeV in the Sequential Standard Model and masses less than 2.2-3.8 TeV depending on the coupling in the non-universal G(221) model are excluded at the 95% credibility level.
Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\phi$ = 5.5) $W^{\prime}$ signals with masses of 3 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table. The table also contains each background contribution to the Standard Model expectation separately with their statistical uncertainties.
Number of expected Standard Model background events including total statistical and systematic uncertainty added in quadrature (calculated before applying the statistical fitting procedure), number of observed events, and the observed and expected 95% CL upper limits on the visible $\tau\nu$ production cross section, $\sigma_{\rm vis} = \sigma(pp \to \tau\nu +X) \cdot \mathcal{A} \cdot \varepsilon$, for $m_{\rm T}$ thresholds ranging from 250 to 1800 GeV. See HepData abstract for details on how to use this data for reinterpretation.
Observed and expected 95% CL upper limits on cross section times $\tau\nu$ branching fraction for $W^{\prime}_{\rm SSM}$.
Regions of the non-universal G(221) parameter space excluded at 95% CL.
Number of expected $W^{\prime}_{\rm SSM}$, $W^{\prime}_{\rm NU}$, Standard Model background and observed events passing the optimal $m_{\rm T}$ threshold for each considered signal mass hypothesis. The expectations include the total statistical and systematic uncertainty added in quadrature. The yields and uncertainties are calculated before applying the statistical fitting procedure.
Acceptance for $W^{\prime}_{\rm SSM}$ as a function of the $W^{\prime}_{\rm SSM}$ mass, shown after successively applying selection at generator-level. The acceptance times efficiency is calculated with respect to all $W^{\prime}_{\rm SSM} \to \tau\nu$ events with a generated $\tau\nu$ mass above 120 GeV. The "selected tau" criteria include the requirement of a $\tau_{\rm had-vis}$ with $p_{\rm T}$ > 50 GeV and $|\eta|$ < 2.4. The $m_{\rm T}$ threshold for each $W^{\prime}_{\rm SSM}$ mass is defined in Table 5.
Acceptance times efficiency for $W^{\prime}_{\rm SSM}$ as a function of the $W^{\prime}_{\rm SSM}$ mass, shown after successively applying selection at reconstruction-level. The acceptance times efficiency is calculated with respect to all $W^{\prime}_{\rm SSM} \to \tau\nu$ events with a generated $\tau\nu$ mass above 120 GeV. "Preselection" includes all criteria prior to those shown. The $m_{\rm T}$ threshold for each $W^{\prime}_{\rm SSM}$ mass is defined in Table 5.
Reconstruction efficiency as a function of $m_{\rm T}$ (see HepData abstract for parameterization), defined as the ratio of the number of $\tau\nu$ events remaining after applying the full selection at reconstruction-level to those remaining after applying the fiducial selection at generator-level. The efficiency is largely model independent, with an uncertainty of ~10% due to model choice.
A search for $W'$-boson production in the $W' \rightarrow t\bar{b} \rightarrow q\bar{q}' b\bar{b}$ decay channel is presented using 36.1 fb$^{-1}$ of 13 TeV proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The search is interpreted in terms of both a left-handed and a right-handed chiral $W'$ boson within the mass range 1-5 TeV. Identification of the hadronically decaying top quark is performed using jet substructure tagging techniques based on a shower deconstruction algorithm. No significant deviation from the Standard Model prediction is observed and the results are expressed as upper limits on the $W' \rightarrow t\bar{b}$ production cross-section times branching ratio as a function of the $W'$-boson mass. These limits exclude $W'$ bosons with right-handed couplings with masses below 3.0 TeV and $W'$ bosons with left-handed couplings with masses below 2.9 TeV, at the 95% confidence level.
Observed and expected 95% CL limits on the right-handed W'-boson cross-section times branching ratio of W' to tb decay as a function of the corresponding W'-boson mass.
Observed and expected 95% CL limits on the left-handed W'-boson cross-section times branching ratio of W' to tb decay as a function of the corresponding W'-boson mass.
Reconstructed mtb distribution in data and for the background after the fit to the data in the signal region SR1. The statistical uncertainty on data points is calculated using assymetric Poisson confidence intervals.
Reconstructed mtb distribution in data and for the background after the fit to the data in the signal region SR2. The statistical uncertainty on data points is calculated using assymetric Poisson confidence intervals.
Reconstructed mtb distribution in data and for the background after the fit to the data in the signal region SR3. The statistical uncertainty on data points is calculated using assymetric Poisson confidence intervals.
Reconstructed mtb distribution in data and for the background after the fit to the data in the validation region VR. The statistical uncertainty on data points is calculated using assymetric Poisson confidence intervals.
A search for a heavy neutral Higgs boson, $A$, decaying into a $Z$ boson and another heavy Higgs boson, $H$, is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s} = 13$ TeV recorded in 2015 and 2016 by the ATLAS detector at the Large Hadron Collider. The search considers the $Z$ boson decaying to electrons or muons and the $H$ boson into a pair of $b$-quarks. No evidence for the production of an $A$ boson is found. Considering each production process separately, the 95% confidence-level upper limits on the $pp\rightarrow A\rightarrow ZH$ production cross-section times the branching ratio $H\rightarrow bb$ are in the range of 14-830 fb for the gluon-gluon fusion process and 26-570 fb for the $b$-associated process for the mass ranges 130-700 GeV of the $H$ boson and process for the mass ranges 130-700 GeV of the $H$ boson and 230-800 GeV of the $A$ boson. The results are interpreted in the context of the two-Higgs-doublet model.
The signal efficiency for the production modes (gluon-gluon fusion and b-associated production) and the signal regions used in the analysis. The efficiency denominator has the total number of generated MC events. The numerator includes the events passing the full signal region selection, including the mbb window cuts. The table shows for each signal mass pair (mA, mH) 3 efficiencies corresponding to the two production modes in the two categories, 2tag and 3tag. These corresponds to "nb = 2 category" and "nb >= 3 category", respectively, of the preprint. No numbers for gluon-gluon fusion in the 3tag category are provided since those are not used in the analysis. The efficiencies are given in fractions.
The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced via gluon-gluon fusion. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for a narrow width A boson produced in association with b-quarks. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The result refers to the combination of the nb=2 and nb>=3 categories.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 5, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 10, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-I, tanbeta 20, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-I only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 5, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 10, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the type-II, tanbeta 20, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For type-II both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the lepton specific, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For lepton specific only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the lepton specific, tanbeta 2, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For lepton specific only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the lepton specific, tanbeta 3, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For lepton specific only gluon-gluon fusion is used and the nb=2 category only.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 1, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 5, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 10, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The cross section times BR(A->ZH) times BR(H->bb) limits for an A boson in the flipped, tanbeta 20, 2HDM. For each signal point, characterised by the mass pair (mA, mH), two limits are provided, the observed and the expected. The correct width as predicted by this particular parameter choice of the 2HDM is used. For flipped both gluon-gluon fusion and b-associated production are used and the nb=2 and nb>=3 categories are combined.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 130 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 130 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 140 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 140 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 150 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 150 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 160 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 160 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 170 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 170 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 180 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 180 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 190 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 190 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 210 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 210 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 220 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 220 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 230 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 230 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 240 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 240 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 250 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 250 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 260 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 260 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 270 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 270 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 280 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 280 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 290 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 290 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 310 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 310 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 320 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 320 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 330 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 330 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 340 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 340 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 350 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 350 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 360 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 360 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 370 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 370 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 380 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 380 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 390 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 390 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 400 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 400 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 410 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 410 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 420 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 420 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 430 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 430 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 440 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 440 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 450 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 450 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 460 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 460 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 470 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 470 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 480 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 480 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 490 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 490 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 510 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 510 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 520 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 520 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 530 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 530 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 540 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 540 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 550 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 550 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 560 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 560 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 570 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 570 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 580 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 580 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 590 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 590 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 600 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 600 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 610 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 610 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 620 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 620 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 630 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 630 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 640 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 640 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 650 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 650 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 660 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 660 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 670 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 670 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 680 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 680 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 690 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 690 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 700 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 700 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 200 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 200 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 300 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 300 GeV for the nb >= 3 (3 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 500 GeV for the nb = 2 (2 tag) category.
The mass distribution of the llbb system used in the fit to derive the limits for the mbb window centered at 500 GeV for the nb >= 3 (3 tag) category.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.