Date

Measurement of Event Background Fluctuations for Charged Particle Jet Reconstruction in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 03 (2012) 053, 2012.
Inspire Record 1084331 DOI 10.17182/hepdata.58285

The effect of event background fluctuations on charged particle jet reconstruction in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV has been measured with the ALICE experiment. The main sources of non-statistical fluctuations are characterized based purely on experimental data with an unbiased method, as well as by using single high $p_{\rm T}$ particles and simulated jets embedded into real Pb-Pb events and reconstructed with the anti-$k_{\rm T}$ jet finder. The influence of a low transverse momentum cut-off on particles used in the jet reconstruction is quantified by varying the minimum track $p_{\rm T}$ between 0.15 GeV/$c$ and 2 GeV/$c$. For embedded jets reconstructed from charged particles with $p_{\rm T} > 0.15$ GeV/$c$, the uncertainty in the reconstructed jet transverse momentum due to the heavy-ion background is measured to be 11.3 GeV/$c$ (standard deviation) for the 10% most central Pb-Pb collisions, slightly larger than the value of 11.0 GeV/$c$ measured using the unbiased method. For a higher particle transverse momentum threshold of 2 GeV/$c$, which will generate a stronger bias towards hard fragmentation in the jet finding process, the standard deviation of the fluctuations in the reconstructed jet transverse momentum is reduced to 4.8-5.0 GeV/$c$ for the 10% most central events. A non-Gaussian tail of the momentum uncertainty is observed and its impact on the reconstructed jet spectrum is evaluated for varying particle momentum thresholds, by folding the measured fluctuations with steeply falling spectra.

7 data tables match query

DeltaPT of random cones in the 10% most central events for three types of random cone probes with a minimum track PT of 0.15 GeV. (1) sampling all the events, (2) avoiding overlap with the leading jet candidate in the event and (3) after randomizing the (ETA,PHI) direction of the tracks hence destroying any correlations.

DeltaPT of random cones in the 10% most central events for three regions with a minimum track PT of 0.15 GeV. (1) the in-plane orientation where the angle between the reconstructed event plane and the random cone axis is < 30 degrees, (2) the out-of plane orientation where this angle is > 60 degrees and (3) the intermediate region where this angle is between 30 and 60 degrees.

Dependence of the standard deviation on the uncorrected charged particle multiplicity. As in figure 2 the data are given for three different random cone probes: (1) sampling all the events, (2) avoiding overlap with the leading jet candidate in the event and (3) after randomizing the (ETA,PHI) direction of the tracks hence destroying any correlations.

More…

Constraints On Covariant WIMP-Nucleon Effective Field Theory Interactions from the First Science Run of the LUX-ZEPLIN Experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Phys.Rev.Lett. 133 (2024) 221801, 2024.
Inspire Record 2781562 DOI 10.17182/hepdata.151391

The first science run of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA, has reported leading limits on spin-independent WIMP-nucleon interactions and interactions described from a non-relativistic effective field theory (NREFT). Using the same 5.5~t fiducial mass and 60 live days of exposure we report on the results of a relativistic extension to the NREFT. We present constraints on couplings from covariant interactions arising from the coupling of vector, axial currents, and electric dipole moments of the nucleon to the magnetic and electric dipole moments of the WIMP which cannot be described by recasting previous results described by an NREFT. Using a profile-likelihood ratio analysis, in an energy region between 0~keV$_\text{nr}$ to 270~keV$_\text{nr}$, we report 90% confidence level exclusion limits on the coupling strength of five interactions in both the isoscalar and isovector bases.

40 data tables match query

Isoscalar interaction coupling limit for Lagrangian 1

Isovector interaction coupling limit for Lagrangian 19

Isoscalar interaction coupling limit for Lagrangian 19

More…

Probing the Scalar WIMP-Pion Coupling with the first LUX-ZEPLIN data

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Commun.Phys. 7 (2024) 292, 2024.
Inspire Record 2794384 DOI 10.17182/hepdata.152755

Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a 5.5~tonne fiducial mass of liquid xenon, we report the results on a search for WIMP-pion interactions. We observe no significant excess and set an upper limit of $1.5\times10^{-46}$~cm$^2$ at a 90% confidence level for a WIMP mass of 33~GeV/c$^2$ for this interaction.

1 data table match query

WIMP-Pion interaction cross section at the 90% CL


First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Akerlof, C.W. ; et al.
Phys.Rev.Lett. 131 (2023) 041002, 2023.
Inspire Record 2107834 DOI 10.17182/hepdata.144760

The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60~live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c$^2$. The most stringent limit is set for spin-independent scattering at 36 GeV/c$^2$, rejecting cross sections above 9.2$\times 10^{-48}$ cm$^2$ at the 90% confidence level.

5 data tables match query

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties

90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties

More…

A search for new physics in low-energy electron recoils from the first LZ exposure

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Musalhi, A.K. Al ; et al.
Phys.Rev.D 108 (2023) 072006, 2023.
Inspire Record 2683605 DOI 10.17182/hepdata.144761

The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment's first exposure of 60 live days and a fiducial mass of 5.5t. The data are found to be consistent with a background-only hypothesis, and limits are set on models for new physics including solar axion electron coupling, solar neutrino magnetic moment and millicharge, and electron couplings to galactic axion-like particles and hidden photons. Similar limits are set on weakly interacting massive particle (WIMP) dark matter producing signals through ionized atomic states from the Migdal effect.

10 data tables match query

The SR1 data in the {S1c, log10S2c} space with respect to observed time. Top plot is first half of SR1 containing 178 of the final data set. Bottom plot is second half of SR1 containing 157 events.

Electronic Recoil (ER) detection efficiency evaluated as a function of simulated true ER energy [keVee]. The data contains ER detection efficiency for ROI of study.

The observed 90% C.L upper limit on effective neutrino magnetic moment (\mu_{\nu}[\mu_{B}]) in SR1. The data contains observed upper limit, median sensitivity and 1\sigma and 2\sigma sensitivity range.

More…

First Constraints on WIMP-Nucleon Effective Field Theory Couplings in an Extended Energy Region From LUX-ZEPLIN

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Musalhi, A.K. Al ; et al.
Phys.Rev.D 109 (2024) 092003, 2024.
Inspire Record 2729878 DOI 10.17182/hepdata.145873

Following the first science results of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time projection chamber operating from the Sanford Underground Research Facility in Lead, South Dakota, USA, we report the initial limits on a model-independent non-relativistic effective field theory describing the complete set of possible interactions of a weakly interacting massive particle (WIMP) with a nucleon. These results utilize the same 5.5 t fiducial mass and 60 live days of exposure collected for the LZ spin-independent and spin-dependent analyses while extending the upper limit of the energy region of interest by a factor of 7.5 to 270 keVnr. No significant excess in this high energy region is observed. Using a profile-likelihood ratio analysis, we report 90% confidence level exclusion limits on the coupling of each individual non-relativistic WIMP-nucleon operator for both elastic and inelastic interactions in the isoscalar and isovector bases.

58 data tables match query

Data points used in analysis in log_10(S2)-S1 space.

Data selection efficiency as a function of nuclear recoil energy

Isoscalar WIMP-nucleon elastic coupling limit for Operator 8

More…

New constraints on cosmic ray-boosted dark matter from the LUX-ZEPLIN experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Phys.Rev.Lett. 134 (2025) 241801, 2025.
Inspire Record 2903333 DOI 10.17182/hepdata.157863

While dual-phase xenon time projection chambers (TPCs) have driven the sensitivity towards weakly interacting massive particles (WIMPs) at the GeV/c^2 to TeV/c^2 mass scale, the scope for sub-GeV/c^2 dark matter particles is hindered by a limited nuclear recoil energy detection threshold. One approach to probe for lighter candidates is to consider cases where they have been boosted by collisions with cosmic rays in the Milky Way, such that the additional kinetic energy lifts their induced signatures above the nominal threshold. In this Letter, we report first results of a search for cosmic ray-boosted dark matter (CRDM) with a combined 4.2 tonne-year exposure from the LUX-ZEPLIN (LZ) experiment. We observe no excess above the expected backgrounds and establish world-leading constraints on the spin-independent CRDM-nucleon cross section as small as 3.9 * 10^{-33} cm^2 at 90% confidence level for sub-GeV/c^2 masses.

1 data table match query

90% CL CRDM-nucleon cross sections


Version 2
Dark Matter Search Results from 4.2 Tonne-Years of Exposure of the LUX-ZEPLIN (LZ) Experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Phys.Rev.Lett. 135 (2025) 011802, 2025.
Inspire Record 2841863 DOI 10.17182/hepdata.155182

We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from $^{214}$Pb $β$ decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of $^{124}$Xe, representing a noteworthy new background. After removal of artificial signal-like events injected into the data set to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses $\geq$9 GeV/$c^2$. The strongest SI exclusion set is $2.2\times10^{-48}$ cm$^{2}$ at the 90% confidence level and the best SI median sensitivity achieved is $5.1\times10^{-48}$ cm$^{2}$, both for a mass of 40 GeV/$c^2$.

10 data tables match query

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties

More…

Midrapidity antiproton-to-proton ratio in pp collisions at $\sqrt{s} = 0.9$ and $7$~TeV measured by the ALICE experiment

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Phys.Rev.Lett. 105 (2010) 072002, 2010.
Inspire Record 859610 DOI 10.17182/hepdata.55557

The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\sqrt{s} = 0.9$ and $7$ TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\rm{t}} < 1.05$ GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \pm 0.006 (stat.) \pm 0.014 (syst.)$ at $0.9$ TeV and $R_{|y| < 0.5} = 0.991 \pm 0.005 (stat.) \pm 0.014 (syst.)$ at $7$ TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

2 data tables match query

The PT dependence of the pbar/p ratio for the central rapidity region ABS(YRAP)<0.5.

The central rapidity pbar/p ratio as a function of the rapidity interval Ybeam-Ybaryon and centre-of-mass energy. As well as the present ALICE measurements this table also lists the values from other experiments (see the text of the paper for details).


Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 89-108, 2010.
Inspire Record 852450 DOI 10.17182/hepdata.54742

Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.

23 data tables match query

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for NSD collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 2360 GeV.

More…