Showing 2 of 22 results
A search for chargino$-$neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $\sqrt{s} = 13$ TeV $pp$ collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($\tilde\chi^\pm_1$) and neutralinos ($\tilde\chi^0_2$) are considered. For pure higgsino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair-production scenarios, exclusion limits at 95% confidence level are set on $\tilde\chi^0_2$ masses up to 210 GeV. Limits are also set for pure wino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair production, on $\tilde\chi^0_2$ masses up to 640 GeV for decays via on-shell $W$ and $Z$ bosons, up to 300 GeV for decays via off-shell $W$ and $Z$ bosons, and up to 190 GeV for decays via $W$ and Standard Model Higgs bosons.
This is the HEPData space for the ATLAS SUSY EWK three-lepton search. The full resolution figures can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-09/ The full statistical likelihoods have been provided for this analysis. They can be downloaded by clicking on the purple 'Resources' button above and selecting the 'Common Resources' category. <b>Region yields:</b> <ul display="inline-block"> <li><a href="?table=Tab%2012%20Onshell%20WZ%20Signal%20Region%20Yields%20Table">Tab 12 Onshell WZ Signal Region Yields Table</a> <li><a href="?table=Tab%2013%20Onshell%20Wh%20Signal%20Region%20Yields%20Table">Tab 13 Onshell Wh Signal Region Yields Table</a> <li><a href="?table=Tab%2014%20Offshell%20low-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 14 Offshell low-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2015%20Offshell%20high-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 15 Offshell high-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2020%20RJR%20Signal%20Region%20Yields%20Table">Tab 20 RJR Signal Region Yields Table</a> <li><a href="?table=Fig%204%20Onshell%20Control%20and%20Validation%20Region%20Yields">Fig 4 Onshell Control and Validation Region Yields</a> <li><a href="?table=Fig%208%20Offshell%20Control%20and%20Validation%20Region%20Yields">Fig 8 Offshell Control and Validation Region Yields</a> <li><a href="?table=Fig%2010%20Onshell%20WZ%20Signal%20Region%20Yields">Fig 10 Onshell WZ Signal Region Yields</a> <li><a href="?table=Fig%2011%20Onshell%20Wh%20Signal%20Region%20Yields">Fig 11 Onshell Wh Signal Region Yields</a> <li><a href="?table=Fig%2012%20Offshell%20Signal%20Region%20Yields">Fig 12 Offshell Signal Region Yields</a> <li><a href="?table=Fig%2018%20RJR%20Control%20and%20Validation%20Region%20Yields">Fig 18 RJR Control and Validation Region Yields</a> </ul> <b>Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs">Fig 16a WZ Exclusion: Wino-bino(+), Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Up">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Down">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp">Fig 16a WZ Exclusion: Wino-bino(+), Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Up">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Down">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Obs">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Exp">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs">Fig 17 Wh Exclusion, Obs</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Up">Fig 17 Wh Exclusion, Obs_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Down">Fig 17 Wh Exclusion, Obs_Down</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp">Fig 17 Wh Exclusion, Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Up">Fig 17 Wh Exclusion, Exp_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Down">Fig 17 Wh Exclusion, Exp_Down</a> </ul> <b>Upper limits:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%208a%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8a WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208b%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8b WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208c%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8c WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208d%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8d WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208e%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8e WZ Excl. Upper Limit Obs. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208f%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8f WZ Excl. Upper Limit Exp. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208g%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Higgsino%20($\Delta%20m$)">AuxFig 8g WZ Excl. Upper Limit Obs. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%208h%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Higgsino%20($\Delta%20m$)">AuxFig 8h WZ Excl. Upper Limit Exp. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%209a%20Wh%20Excl.%20Upper%20Limit%20Obs.">AuxFig 9a Wh Excl. Upper Limit Obs.</a> <li><a href="?table=AuxFig%209b%20Wh%20Excl.%20Upper%20Limit%20Exp.">AuxFig 9b Wh Excl. Upper Limit Exp.</a> </ul> <b>Model-independent discovery fits:</b> <ul display="inline-block"> <li><a href="?table=Tab%2018%20Onshell%20Discovery%20Fit%20Table">Tab 18 Onshell Discovery Fit Table</a> <li><a href="?table=Tab%2019%20Offshell%20Discovery%20Fit%20Table">Tab 19 Offshell Discovery Fit Table</a> <li><a href="?table=Tab%2021%20RJR%20Discovery%20Fit%20Table">Tab 21 RJR Discovery Fit Table</a> </ul> <b>Kinematic distributions:</b> <ul display="inline-block"> <li><a href="?table=Fig%2013a%20SR$_{DFOS}^{Wh}$-1%20($\Delta%20R_{OS,%20near}$)">Fig 13a SR$_{DFOS}^{Wh}$-1 ($\Delta R_{OS, near}$)</a> <li><a href="?table=Fig%2013b%20SR$_{DFOS}^{Wh}$-2%20(3rd%20Lep.%20$p_{T}$)">Fig 13b SR$_{DFOS}^{Wh}$-2 (3rd Lep. $p_{T}$)</a> <li><a href="?table=Fig%2013c%20SR$_{0j}^{WZ}$%20($E_{T}^{miss}$)">Fig 13c SR$_{0j}^{WZ}$ ($E_{T}^{miss}$)</a> <li><a href="?table=Fig%2013d%20SR$_{0j}^{WZ}$%20($m_{T}$)">Fig 13d SR$_{0j}^{WZ}$ ($m_{T}$)</a> <li><a href="?table=Fig%2014a%20SR$^{offWZ}_{LowETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14a SR$^{offWZ}_{LowETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014b%20SR$^{offWZ}_{LowETmiss}$-nj%20($m_{T}^{minmll}$)">Fig 14b SR$^{offWZ}_{LowETmiss}$-nj ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014c%20SR$^{offWZ}_{HighETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14c SR$^{offWZ}_{HighETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014d%20SR$^{offWZ}_{HighETmiss}$-nj%20($p_T^l%20\div%20E_T^{miss}$)">Fig 14d SR$^{offWZ}_{HighETmiss}$-nj ($p_T^l \div E_T^{miss}$)</a> <li><a href="?table=Fig%2020a%20RJR%20SR3$\ell$-Low%20($p_{T}^{\ell%201}$)">Fig 20a RJR SR3$\ell$-Low ($p_{T}^{\ell 1}$)</a> <li><a href="?table=Fig%2020b%20RJR%20SR3$\ell$-Low%20($H_{3,1}^{PP}$)">Fig 20b RJR SR3$\ell$-Low ($H_{3,1}^{PP}$)</a> <li><a href="?table=Fig%2020c%20RJR%20SR3$\ell$-ISR%20($p_{T~ISR}^{CM}$)">Fig 20c RJR SR3$\ell$-ISR ($p_{T~ISR}^{CM}$)</a> <li><a href="?table=Fig%2020d%20RJR%20SR3$\ell$-ISR%20($R_{ISR}$)">Fig 20d RJR SR3$\ell$-ISR ($R_{ISR}$)</a> </ul> <b>Cutflows:</b> <ul display="inline-block"> <li><a href="?table=AuxTab%205%20Cutflow:%20Onshell%20WZ">AuxTab 5 Cutflow: Onshell WZ</a> <li><a href="?table=AuxTab%206%20Cutflow:%20Onshell%20Wh">AuxTab 6 Cutflow: Onshell Wh</a> <li><a href="?table=AuxTab%207%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,235)">AuxTab 7 Cutflow: Offshell Wino-bino(+) (250,235)</a> <li><a href="?table=AuxTab%208%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(125,85)">AuxTab 8 Cutflow: Offshell Wino-bino(+) (125,85)</a> <li><a href="?table=AuxTab%209%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,170)">AuxTab 9 Cutflow: Offshell Wino-bino(+) (250,170)</a> <li><a href="?table=AuxTab%2010%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,235)">AuxTab 10 Cutflow: Offshell Wino-bino(-) (250,235)</a> <li><a href="?table=AuxTab%2011%20Cutflow:%20Offshell%20Wino-bino(-)%20(125,85)">AuxTab 11 Cutflow: Offshell Wino-bino(-) (125,85)</a> <li><a href="?table=AuxTab%2012%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,170)">AuxTab 12 Cutflow: Offshell Wino-bino(-) (250,170)</a> <li><a href="?table=AuxTab%2013%20Cutflow:%20Offshell%20Higgsino%20(120,100)">AuxTab 13 Cutflow: Offshell Higgsino (120,100)</a> <li><a href="?table=AuxTab%2014%20Cutflow:%20Offshell%20Higgsino%20(100,40)">AuxTab 14 Cutflow: Offshell Higgsino (100,40)</a> <li><a href="?table=AuxTab%2015%20Cutflow:%20Offshell%20Higgsino%20(185,125)">AuxTab 15 Cutflow: Offshell Higgsino (185,125)</a> </ul> <b>Acceptances and Efficiencies:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%2010a%20Acc:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10a Acc: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010b%20Eff:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10b Eff: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010c%20Acc:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10c Acc: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2010d%20Eff:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10d Eff: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2011a%20Acc:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11a Acc: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011b%20Eff:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11b Eff: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011c%20Acc:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11c Acc: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011d%20Eff:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11d Eff: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011e%20Acc:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11e Acc: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2011f%20Eff:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11f Eff: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2012a%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12a Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012b%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12b Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012c%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12c Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012d%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12d Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012e%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12e Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012f%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12f Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012g%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12g Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2012h%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12h Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013a%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13a Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013b%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13b Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013c%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13c Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013d%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13d Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013e%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13e Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013f%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13f Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013g%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13g Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013h%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13h Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014a%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14a Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014b%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14b Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014c%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14c Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014d%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14d Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014e%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14e Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014f%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14f Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014g%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14g Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014h%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14h Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> </ul>
Comparison of the observed data and expected SM background yields in the CRs (pre-fit) and VRs (post-fit) of the onshell $W\!Z$ and $W\!h$ selections. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the relative difference between the observed data and expected yields for the CRs and the significance of the difference for the VRs, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Comparison of the observed data and expected SM background yields in the CRs and VRs of the offshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in the SRs for the onshell $W\!Z$ selection. The normalization factors of the $W\!Z$ sample are extracted separately for the 0j, low-H<sub>T</sub> and high-H<sub>T</sub> regions, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Observed and expected yields after the background-only fit in the SRs for the $W\!h$ selection. The normalization factors of the $W\!Z$ sample are extracted separately for the 0j, low-H<sub>T</sub> and high-H<sub>T</sub> regions, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, tt̄+X and rare top processes. Combined statistical and systematic uncertainties are presented.
Comparison of the observed data and expected SM background yields in the SRs of the onshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Comparison of the observed data and expected SM background yields in the SRs of the $W\!h$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, tt̄+X and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in SR<sup>offWZ</sup><sub>lowETmiss</sub>. The normalization factors of the $W\!Z$ sample extracted separately for 0j and nj, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Observed and expected yields after the background-only fit in SR<sup>offWZ</sup><sub>highETmiss</sub>. The normalization factors of the $W\!Z$ sample extracted separately for 0j and nj, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Comparison of the observed data and expected SM background yields in the SRs of the offshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W^{*}\!Z^{*}$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Observed (N<sub>obs</sub>) yields after the discovery-fit and expected (N<sub>exp</sub>) after the background-only fit, for the inclusive SRs of the onshell $W\!Z$ and $W\!h$ selections. The third and fourth column list the 95 CL upper limits on the visible cross-section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The fifth column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5.
Observed (N<sub>obs</sub>) yields after the discovery-fit and expected (N<sub>exp</sub>) after the background-only fit, for the inclusive SRs of the offshell $W\!Z$ selection. The third and fourth column list the 95 CL upper limits on the visible cross section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The fifth column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Comparison of the observed data and expected SM background yields in the CRs and VRs of the RJR selection. The SM prediction is taken from the background-only fit. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in the SRs for the RJR selection. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
{Results of the discovery-fit for the SRs of the RJR selection, calculated using pseudo-experiments.} The first and second column list the 95 CL upper limits on the visible cross section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The third column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5. vspace{0.5em}
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!h$-mediated model, for the wino/bino (+) scenario, as in Figure 17. The black numbers represent the observed (a,c,e,g) and expected (b,d,f,h) upper cross-section limits.
Exclusion limits obtained for the $W\!h$-mediated model, for the wino/bino (+) scenario, as in Figure 17. The black numbers represent the observed (a,c,e,g) and expected (b,d,f,h) upper cross-section limits.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
Summary of onshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (300,200) GeV and m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (600,100) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal points, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks per inclusive regions, and then further for each SR. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5.
Summary of $W\!h$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (190,60) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks per inclusive regions, and then further for each SR. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,235) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (125,85) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,170) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,235) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (125,85) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,170) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (120,100) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (100,40) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (185,125) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
A search for supersymmetry in events with four or more charged leptons (electrons, muons and $\tau$-leptons) is presented. The analysis uses a data sample corresponding to $139\,\mbox{fb\(^{-1}\)}$ of proton-proton collisions delivered by the Large Hadron Collider at $\sqrt{s}=13$ TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying $\tau$-leptons are designed to target several supersymmetric models, while a general five-lepton signal region targets any new physics phenomena leading to a final state with five charged leptons. Data yields are consistent with Standard Model expectations and results are used to set upper limits on contributions from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of general gauge-mediated supersymmetry, excluding higgsino masses up to $540$ GeV. In $R$-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of $1.6$ TeV, $1.2$ TeV, and $2.5$ TeV are placed on wino, slepton and gluino masses, respectively.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$^{\mathrm{loose}}$ and SR0-ZZ$^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
Expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ bserved 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the higgsino GGM models. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the higgsino GGM models. A value of 6 corresponds to SR0-ZZ$^{\mathrm{loose}}$, 7 corresponds to SR0-ZZ$^{\mathrm{tight}}$, 8 corresponds to SR0-ZZ$^{\mathrm{loose}}_{\mathrm{bveto}}$, and 9 corresponds to SR0-ZZ$^{\mathrm{tight}}_{\mathrm{bveto}}$.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{tight}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the taus leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light taus in distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and two Z candidates. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with exactly five light leptons. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
Cutflow event yields in regions SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$, SR0$_{\mathrm{breq}}$, and SR5L for RPV models with the $\lambda_{12k}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR1$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR2$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR0-ZZ$^{\mathrm{loose}}$, SR0-ZZ$^{\mathrm{tight}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR5L the higgsino GGM RPC model with BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 50% and higgsino masses of 200 GeV, or BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 100% and higgsino masses of 300 GeV. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The generator filter is a selection of $\geq$4e/$\mu$/$\tau_{\mathrm{had-vis}}$ leptons with $p_{\mathrm{T}}(e,\mu)>4$GeV, $p_{\mathrm{T}}(\tau_{\mathrm{had-vis}})>15$GeV and $|\eta|<2.8$ and is applied during the MC generation of the simulated events. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} > 9$ GeV are required.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.