Date

Elastic 1 gev proton scattering on k-39 and ca-40 nuclei

Alkhazov, G.D. ; Amalskii, G.M. ; Belostotskii, S.L. ; et al.
Zh.Eksp.Teor.Fiz. 18 (1973) 309-312, 1973.
Inspire Record 87607 DOI 10.17182/hepdata.37171

None

3 data tables

X ERROR D(TARGET) = 96.97 PCT.

X ERROR D(TARGET) = 93.08 PCT.


Differential cross-sections for k+- n charge-exchange scattering in deuterium between 0.64 and 1.51 gev/c

Giacomelli, G. ; Lugaresi-Serra, P. ; Minguzzi-Ranzi, A. ; et al.
Nucl.Phys.B 42 (1972) 437-444, 1972.
Inspire Record 75128 DOI 10.17182/hepdata.32917

We present results on the differential cross sections for the process K + n → K 0 p extracted from the reaction K + d → K 0 pp measured at 13 momenta between 0.64 and 1.51 GeV/ c .

2 data tables

THESE TOTAL CROSS SECTIONS WERE PRESENTED WITH MORE EXPERIMENTAL DETAILS IN G. GIACOMELLI ET AL., NP B37, 577 (1972).

REACTION HAS A SPECTATOR PROTON. THESE ARE NOT FREE NEUTRON CROSS SECTIONS. A 250 MEV/C MOMENTUM CUT IS APPLIED TO THE SPECTATOR MOMENTUM AND D(SIG)/DOMEGA THEN NORMALIZED TO THE UNCUT TOTAL CROSS SECTION FOR K+ DEUT --> K0 P P.


A study of k+ d interactions from 865 to 1585 mev/c

Hirata, A.A. ; Goldhaber, G. ; Seeger, V.H. ; et al.
Nucl.Phys.B 33 (1971) 525-557, 1971.
Inspire Record 68456 DOI 10.17182/hepdata.33070

We present experimental results on K + d interactions from 865 to 1585 MeV/ c incident beam momentum. We report measurements of several K + d partial cross sections and calculate most of the others using relations derived from isospin conservation and data from other experiments. The most striking feature of the cross section data is the abrupt rise of the total single-pion-production cross section near 1000 MeV/ c . We extract isospin-0 KN partial cross sections and find a rapid quasi-two-body reaction KN → K ∗ N . As in the case of the isospin-1 K + N system, it appears that the structure around 1200 MeV/ c in the total cross section for the isospin-0 K ∗ N system is well reconstructed by the sum of three smoothly varying channel cross sections σ 0 (KN), σ 0 (KN π ) and σ 0 (KN ππ ). We study thereaction KN → K ∗ N near threshold and find that the production and decay angular distributions can be interpreted in terms of t -channel phenomena, specifically a superposition of ω, ϱ, and π exchange. As is true of the isospin-1 KΔ and K ∗ N final states, the isospin-0 K ∗ N state has a behavior near threshold which is not very different from its behavior at much higher energy.

27 data tables

No description provided.

No description provided.

No description provided.

More…