Date

Observation of top-quark pair production in lead-lead collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 134 (2025) 142301, 2025.
Inspire Record 2849226 DOI 10.17182/hepdata.156982

Top-quark pair production is observed in lead-lead (Pb+Pb) collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb$^{-1}$. Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross-section is $\sigma_{t\bar{t}} = 3.6\;^{+1.0}_{-0.9}\;\mathrm{(stat.)}\;^{+0.8}_{-0.5}\;\mathrm{(syst.)} ~\mathrm{\mu b}$, with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the pre-equilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early universe.

5 data tables

The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR1 (Signal Region 1 (SR\(_1\)):} Events with exactly one muon and one oppositely charged electron, a dilepton invariant mass \( m_{e\mu} \geq 30 \, \mathrm{GeV} \), at least two jets with \( p_T \geq 35 \, \mathrm{GeV} \), and a dilepton transverse momentum \( p_T^{e\mu} > 40 \, \mathrm{GeV} \). This region is expected to be signal-dominated) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.

The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR2 (Signal Region 2 (SR\(_2\)):} Events meeting the same criteria as SR\(_1\), but with a dilepton transverse momentum \( p_T^{e\mu} \leq 40 \, \mathrm{GeV} \). This region includes events with a lower \( p_T^{e\mu} \) and has a larger background contribution) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.

The impact of systematic uncertainties on the fitted signal-strength parameter $\hat{\mu}$ for the combined fit of all channels. Only the 10 most significant systematic uncertainties are shown and listed in decreasing order of their impact on $\mu$ on the $y$-axis. The empty (filled) blue/cyan boxes correspond to the pre-fit (post-fit) impact on $\mu$, referring to the upper $x$-axis. The impact of each systematic uncertainty, $\Delta \mu$, is calculated by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the corresponding nuisance parameter $\theta$ to its best-fit value $\hat{\theta}$ shifted by its pre-fit (post-fit) uncertainties $\hat{\theta} \pm \Delta \theta(\hat{\theta} \pm \Delta \hat{\theta})$. The black points, which refer to the lower $x$-axis, show the pulls of the fitted nuisance parameters, i.e., the deviations of the fitted parameters $\hat{\theta}$ from their nominal values $\theta_0$, normalized to their nominal uncertainties $\Delta \theta$. The black lines show the post-fit uncertainties of the nuisance parameters, relative to their nominal uncertainties, which are indicated by the dashed lines.

More…

Precision measurement of the $B^{0}$ meson lifetime using $B^{0} \rightarrow J/\psi K^{*0}$ decays with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 85 (2025) 736, 2025.
Inspire Record 2849026 DOI 10.17182/hepdata.158278

A measurement of the $B^{0}$ meson lifetime and related properties using $B^0 \to J/ψK^{*0}$ decays in data from 13 TeV proton-proton collisions with an integrated luminosity of 140 fb$^{-1}$ recorded by the ATLAS detector at the LHC is presented. The measured effective lifetime is $$ τ= 1.5053 \pm 0.0012 ~\mathrm{(stat.)} \pm 0.0035 ~\mathrm{(syst.)~ps}. $$ The average decay width extracted from the effective lifetime, using parameters from external sources, is $$ Γ_d = 0.6639 \pm 0.0005 ~\mathrm{(stat.)} \pm 0.0016 ~\mathrm{(syst.)}\pm 0.0038 ~\textrm{(ext.)} \textrm{ ps}^{-1}, $$ where the uncertainties are statistical, systematic and from external sources. The earlier ATLAS measurement of $Γ_s$ in the $B^0_s \to J/ψϕ$ decay was used to derive a value for the ratio of the average decay widths $Γ_d$ and $Γ_s$ for $B^{0}$ and $B_s^{0}$ mesons respectively, of $$ \frac{Γ_d }{Γ_s } = 0.9905 \pm 0.0022 ~\textrm{(stat.)} \pm 0.0036 ~\textrm{(syst.)} \pm 0.0057 ~\textrm{(ext.)}. $$ The measured lifetime, average decay width and decay width ratio are in agreement with theoretical predictions and with measurements by other experiments. This measurement provides the most precise result of the effective lifetime of the $B^{0}$ meson to date.

3 data tables

The measured effective lifetime for the $B^0 \rightarrow J/\psi\,K^{*0}$ decay.

The measured average decay width $\Gamma_{d}\,$ extracted from the average lifetime.

The measured ratio $\Gamma_{d} / \Gamma_{s}\,$ of the average decay widths.


System size and energy dependence of the mean transverse momentum fluctuations at the LHC

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Eur.Phys.J.C 85 (2025) 776, 2025.
Inspire Record 2848476 DOI 10.17182/hepdata.159277

Event-by-event fluctuations of the event-wise mean transverse momentum, $\langle p_{\mathrm{T}}\rangle$, of charged particles produced in proton$-$proton (pp) collisions at $\sqrt{s}$ = 5.02 TeV, Xe$-$Xe collisions at $\sqrt{s_{\mathrm{NN}}} =$ 5.44 TeV, and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}} =$ 5.0 TeV are studied using the ALICE detector based on the integral correlator $\langle\langle Δp_{\rm T}Δp_{\rm T}\rangle\rangle $. The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe$-$Xe and Pb$-$Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe$-$Xe and Pb$-$Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity, $S_0$, of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models.

12 data tables

Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in pp collisions at $\sqrt{s}$ = 5.02 TeV.

Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in Xe--Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV.

More…

Measurement of $\omega$ meson production in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
JHEP 04 (2025) 067, 2025.
Inspire Record 2848263 DOI 10.17182/hepdata.157865

The $p_{\rm T}$-differential cross section of $\omega$ meson production in pp collisions at $\sqrt{s}= 13$ TeV at midrapidity ($|y|<0.5$) was measured with the ALICE detector at the LHC, covering an unprecedented transverse-momentum range of $1.6 <p_{\rm T}< 50$ GeV/$c$. The meson is reconstructed via the $\omega\rightarrow\pi^+\pi^-\pi^0$ decay channel. The results are compared with various theoretical calculations: PYTHIA8.2 with the Monash 2013 tune overestimates the data by up to 50%, whereas good agreement is observed with Next-to-Leading Order (NLO) calculations incorporating $\omega$ fragmentation using a broken SU(3) model. The $\omega/\pi^0$ ratio is presented and compared with theoretical calculations and the available measurements at lower collision energies. The presented data triples the $p_{\rm T}$ ranges of previously available measurements. A constant ratio of $C^{\omega/\pi^0}=0.578\pm0.006~\text{(stat.)}\pm 0.013~\text{(syst.)}$ is found above a transverse momentum of $4$ GeV/$c$, which is in agreement with previous findings at lower collision energies within the systematic and statistical uncertainties.

2 data tables

Invariant differential cross section of OMEGA mesons produced in inelastic pp collisions at center-of-mass energy 13 TeV, the uncertainty of sigma_{MB} of 1.58% is not included in the systematic error.

The measured ratio of cross sections for inclusive OMEGA to PI0 production at a centre-of-mass energy of 13 TeV.


Light neutral-meson production in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JHEP 08 (2025) 035, 2025.
Inspire Record 2848478 DOI 10.17182/hepdata.160597

The momentum-differential invariant cross sections of ${\pi^{0}}$ and $\eta$ mesons are reported for pp collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.8$). The measurement is performed in a broad transverse-momentum range of $0.2<p_{\rm T}<200$ GeV/$c$ and $0.4<p_{\rm T}<60$ GeV/$c$ for the ${\pi^{0}}$ and $\eta$, respectively, extending the $p_{\rm T}$ coverage of previous measurements. Transverse-mass-scaling violation of up to 60% at low transverse momentum has been observed, agreeing with measurements at lower collision energies. Transverse Bjorken $x$ ($x_{\rm T}$) scaling of the ${\pi^{0}}$ cross sections at LHC energies is fulfilled with a power-law exponent of $n$ = 5.01$\pm$0.05, consistent with values obtained for charged pions at similar collision energies. The data is compared to predictions from next-to-leading order perturbative QCD calculations, where the ${\pi^{0}}$ spectrum is best described using the CT18 parton distribution function and the NNFF1.0 or BDSS fragmentation function. Expectations from PYTHIA8 and EPOS LHC overestimate the spectrum for the ${\pi^{0}}$ and are not able to describe the shape and magnitude of the $\eta$ spectrum. The charged-particle multiplicity dependent ${\pi^{0}}$ and $\eta$ $p_{\rm T}$ spectra show the expected hardening with increasing multiplicity. This is demonstrated across a broad transverse-momentum range and up to events with a charged-particle multiplicity exceeding five times the mean value in minimum bias collisions. The absolute magnitude of the $\eta/\pi^{0}$ ratio shows a dependence on the charged-particle multiplicity for $p_{\rm T}<4$ GeV/$c$, qualitatively described by PYTHIA8 and EPOS LHC due to a rising contribution from feed-down of heavier particles to the ${\pi^{0}}$ spectrum.

94 data tables

Invariant differential cross section of the $\pi^{0}$ versus transverse momentum for pp collisions at $\sqrt{s}$ = 13 TeV.

Invariant differential cross section of the $\eta$ meson versus transverse momentum for pp collisions at $\sqrt{s}$ = 13 TeV.

The $\eta/\pi^{0}$ ratio as a function of $p_{\rm T}$ for pp collisions at $\sqrt{s}$ = 13 TeV.

More…

Measurements of differential two-particle number and transverse momentum correlation functions in pp collisions at $\sqrt{\textit{s}}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Eur.Phys.J.C 85 (2025) 866, 2025.
Inspire Record 2847021 DOI 10.17182/hepdata.159895

Differential two-particle normalized cumulants ($R_2$) and transverse momentum correlations ($P_2$) are measured as a function of the relative pseudorapidity and azimuthal angle difference $( \Delta \eta, \Delta \varphi )$ of charged particle pairs in minimum bias pp collisions at $\sqrt{\textit{s}}$ = 13 TeV. The measurements use charged hadrons in the pseudorapidity region of $|\eta| < 0.8$ and the transverse momentum range 0.2 $< \textit{p}_{\mathrm T} < $ 2.0 $\mathrm{GeV}/\textit{c}$ in order to focus on soft multiparticle interactions and to complement prior measurements of these correlation functions in p-Pb and Pb-Pb collisions. The correlation functions are reported for both unlike-sign and like-sign pairs and their charge-independent and charge-dependent combinations. Both the $R_2$ and $P_2$ measured in pp collisions exhibit features qualitatively similar to those observed in p-Pb and Pb-Pb collisions. The $\Delta\eta$ and $\Delta\varphi$ root mean square widths of the near-side peak of the correlation functions are evaluated and compared with those observed in p-Pb and Pb-Pb collisions and show smooth evolution with the multiplicity of charged particles produced in the collision. The comparison of the measured correlation functions with predictions from PYTHIA8 shows that this model qualitatively captures their basic structure and characteristics but feature important differences. In addition, the $R_2^{\rm CD}$ is used to determine the charge balance function of hadrons produced within the detector acceptance of the measurements. The integral of the balance function is found to be compatible with those reported by a previous measurement in Pb-Pb collisions. These results, which are sensitive to the interplay between the underlying event and mini-jets in pp collisions, establish a baseline for heavy-ion collisions.

21 data tables

Correlation functions $R_2^{\rm US}$ of charged hadrons measured in minimum bias pp collisions at $\sqrt{s}=13\;\text{TeV}$. Charged hadrons are selected in the range $0.2 < p_{\rm T} < 2.0$ GeV/$c$ and with pseudorapidity $|\eta| < 0.8$.

Correlation functions $R_2^{\rm LS}$ of charged hadrons measured in minimum bias pp collisions at $\sqrt{s}=13\;\text{TeV}$. Charged hadrons are selected in the range $0.2 < p_{\rm T} < 2.0$ GeV/$c$ and with pseudorapidity $|\eta| < 0.8$.

Correlation functions $P_2^{\rm US}$ of charged hadrons measured in minimum bias pp collisions at $\sqrt{s}=13\;\text{TeV}$. Charged hadrons are selected in the range $0.2 < p_{\rm T} < 2.0$ GeV/$c$ and with pseudorapidity $|\eta| < 0.8$.

More…

Search for a heavy charged Higgs boson decaying into a $W$ boson and a Higgs boson in final states with leptons and $b$-jets in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 143, 2025.
Inspire Record 2846106 DOI 10.17182/hepdata.156777

This article presents a search for a heavy charged Higgs boson produced in association with a top quark and a bottom quark, and decaying into a $W$ boson and a $125$ GeV Higgs boson $h$. The search is performed in final states with one charged lepton, missing transverse momentum, and jets using proton-proton collision data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector during Run 2 of the LHC at CERN. This data set corresponds to a total integrated luminosity of 140 fb$^{-1}$. The search is conducted by examining the reconstructed invariant mass distribution of the $Wh$ candidates for evidence of a localised excess in the charged Higgs boson mass range from $250$ GeV to $3$ TeV. No significant excess is observed and 95% confidence-level upper limits between $2.8$ pb and $1.2$ fb are placed on the production cross-section times branching ratio for charged Higgs bosons decaying into $Wh$.

31 data tables

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the resolved analysis.

Upper limit at the 95% CL on the product of the cross-section for the $pp \rightarrow tb H^{\pm}$ process and the branching ratio $B(W^{\pm} \times B (h \rightarrow b \bar{b} ))$ from the combined fit to all signal and control regions of the merged analysis.

Product of acceptance and efficiency for pp->tbH(->Wh) as function of the charged Higgs boson mass for the resolved qqbb low-purity signal region.

More…

A search for triple Higgs boson production in the $6b$ final state using $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 111 (2025) 032006, 2025.
Inspire Record 2845789 DOI 10.17182/hepdata.157024

A search for the production of three Higgs bosons ($HHH$) in the $b\bar{b}b\bar{b}b\bar{b}$ final state is presented. The search uses $126~\text{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis targets both non-resonant and resonant production of $HHH$. The resonant interpretations primarily consider a cascade decay topology of $X\rightarrow SH\rightarrow HHH$ with masses of the new scalars $X$ and $S$ up to 1.5 TeV and 1 TeV, respectively. In addition to scenarios where $S$ is off-shell, the non-resonant interpretation includes a search for standard model (SM) $HHH$ production, with limits on the tri-linear and quartic Higgs self-coupling set. No evidence for $HHH$ production is observed. An upper limit of 59 fb is set, at 95% confidence level, on the cross-section for Standard-Model $HHH$ production.

27 data tables

Jet pairing efficiencies over the parameter space for the SM-like $(\kappa_3,\kappa_4)$ scan. The pairing efficiency is evaluated in the 6$b$ region when a correct pairing is possible — that is, the six leading jets are geometrically matched to truth-level b-quarks.

Jet pairing efficiencies over the parameter space for the TRSM signals. The pairing efficiency is evaluated in the 6$b$ region when a correct pairing is possible — that is, the six leading jets are geometrically matched to truth-level b-quarks.

Jet pairing efficiencies over the parameter space for the narrow-width heavy resonance signals. The pairing efficiency is evaluated in the 6$b$ region when a correct pairing is possible — that is, the six leading jets are geometrically matched to truth-level b-quarks.

More…

Search for supersymmetry in final states with missing transverse momentum and charm-tagged jets using 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 02 (2025) 193, 2025.
Inspire Record 2842361 DOI 10.17182/hepdata.155678

The paper presents a search for supersymmetric particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb$^{-1}$. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle $\tilde{\chi}^0_1$, is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of $\tilde{\chi}^0_1$ is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported.

160 data tables

Summary of material in this HEPData record. <br/><br/> Truth Code snippets, SLHA files, Madgraph process cards and UFO files for the leptoquark models are available under "Additional Resources" (purple button on the left). <br/><br/> <b>Contours:</b> <ul> SUSY exclusion limits (best-expected SR combination) <ul> <a href="155678?version=1&table=Contour1">Expected</a> <a href="155678?version=1&table=Contour3">+1$\sigma$</a> <a href="155678?version=1&table=Contour2">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour4">Observed</a> <a href="155678?version=1&table=Contour5">+1$\sigma$</a> <a href="155678?version=1&table=Contour6">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (best-expected SR combination) as a function of $\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ <ul> <a href="155678?version=1&table=Contour7">Expected</a> <a href="155678?version=1&table=Contour9">+1$\sigma$</a> <a href="155678?version=1&table=Contour8">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour10">Observed</a> <a href="155678?version=1&table=Contour11">+1$\sigma$</a> <a href="155678?version=1&table=Contour12">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM1) <ul> <a href="155678?version=1&table=Contour15">Expected</a> <a href="155678?version=1&table=Contour14">+1$\sigma$</a> <a href="155678?version=1&table=Contour13">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour18">Observed</a> <a href="155678?version=1&table=Contour16">+1$\sigma$</a> <a href="155678?version=1&table=Contour17">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM2) <ul> <a href="155678?version=1&table=Contour21">Expected</a> <a href="155678?version=1&table=Contour20">+1$\sigma$</a> <a href="155678?version=1&table=Contour19">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour24">Observed</a> <a href="155678?version=1&table=Contour22">+1$\sigma$</a> <a href="155678?version=1&table=Contour23">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM3) <ul> <a href="155678?version=1&table=Contour27">Expected</a> <a href="155678?version=1&table=Contour26">+1$\sigma$</a> <a href="155678?version=1&table=Contour25">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour30">Observed</a> <a href="155678?version=1&table=Contour28">+1$\sigma$</a> <a href="155678?version=1&table=Contour29">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp1) <ul> <a href="155678?version=1&table=Contour33">Expected</a> <a href="155678?version=1&table=Contour32">+1$\sigma$</a> <a href="155678?version=1&table=Contour31">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour36">Observed</a> <a href="155678?version=1&table=Contour34">+1$\sigma$</a> <a href="155678?version=1&table=Contour35">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp2) <ul> <a href="155678?version=1&table=Contour39">Expected</a> <a href="155678?version=1&table=Contour38">+1$\sigma$</a> <a href="155678?version=1&table=Contour37">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour42">Observed</a> <a href="155678?version=1&table=Contour40">+1$\sigma$</a> <a href="155678?version=1&table=Contour41">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp3) <ul> <a href="155678?version=1&table=Contour45">Expected</a> <a href="155678?version=1&table=Contour44">+1$\sigma$</a> <a href="155678?version=1&table=Contour43">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour48">Observed</a> <a href="155678?version=1&table=Contour46">+1$\sigma$</a> <a href="155678?version=1&table=Contour47">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp-1c) <ul> <a href="155678?version=1&table=Contour50">Expected</a> <a href="155678?version=1&table=Contour49">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=1$ GeV) <ul> <a href="155678?version=1&table=Contour51">Expected</a> <a href="155678?version=1&table=Contour53">+1$\sigma$</a> <a href="155678?version=1&table=Contour52">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour54">Observed</a> <a href="155678?version=1&table=Contour55">+1$\sigma$</a> <a href="155678?version=1&table=Contour56">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=200$ GeV) <ul> <a href="155678?version=1&table=Contour57">Expected</a> <a href="155678?version=1&table=Contour59">+1$\sigma$</a> <a href="155678?version=1&table=Contour58">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour60">Observed</a> <a href="155678?version=1&table=Contour61">+1$\sigma$</a> <a href="155678?version=1&table=Contour62">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{21}$ exclusion limits <ul> <a href="155678?version=1&table=Contour65">Expected</a> <a href="155678?version=1&table=Contour64">+1$\sigma$</a> <a href="155678?version=1&table=Contour63">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour68">Observed</a> <a href="155678?version=1&table=Contour66">+1$\sigma$</a> <a href="155678?version=1&table=Contour67">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{22}$ exclusion limits <ul> <a href="155678?version=1&table=Contour71">Expected</a> <a href="155678?version=1&table=Contour70">+1$\sigma$</a> <a href="155678?version=1&table=Contour69">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour74">Observed</a> <a href="155678?version=1&table=Contour72">+1$\sigma$</a> <a href="155678?version=1&table=Contour73">-1$\sigma$</a> <br/> </ul> </ul> <b>Cross-section upper limits:</b> <ul> SUSY signals (best-expected SR combination): <a href="155678?version=1&table=Cross-sectionupperlimit1">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit2">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit3">Observed</a> <br/> $U(1)$ pair (min) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit6">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit5">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit4">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit7">Observed</a> <br/> $U(1)$ pair (YM) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit10">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit9">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit8">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit11">Observed</a> <br/> </ul> <b>Signal region distributions:</b> <ul> <a href="155678?version=1&table=SRdistribution2">$E_\mathrm{T}^\mathrm{miss}$ Sig. in SR-HM1</a> <br/> <a href="155678?version=1&table=SRdistribution3">$m_\mathrm{T}^\mathrm{min}(c)$ in SR-HM2</a> <br/> <a href="155678?version=1&table=SRdistribution4">$R_\mathrm{ISR}$ in SR-Comp1</a> <br/> <a href="155678?version=1&table=SRdistribution5">$R_\mathrm{ISR}$ in SR-Comp2</a> <br/> <a href="155678?version=1&table=SRdistribution6">$R_\mathrm{ISR}$ in SR-Comp3</a> <br/> <a href="155678?version=1&table=SRdistribution1">$R_\mathrm{ISR}$ in SR-Comp-1c</a> <br/> </ul> <b>Acceptances:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptance2">SR-HM1</a> <a href="155678?version=1&table=Acceptance3">SR-HM2</a> <a href="155678?version=1&table=Acceptance4">SR-HM3</a> <a href="155678?version=1&table=Acceptance5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptance6">SR-Comp1</a> <a href="155678?version=1&table=Acceptance7">SR-Comp2</a> <a href="155678?version=1&table=Acceptance8">SR-Comp3</a> <a href="155678?version=1&table=Acceptance1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptance9">SR-HM1</a> <a href="155678?version=1&table=Acceptance10">SR-HM2</a> <a href="155678?version=1&table=Acceptance11">SR-HM3</a> <a href="155678?version=1&table=Acceptance12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptance13">SR-HM1</a> <a href="155678?version=1&table=Acceptance14">SR-HM2</a> <a href="155678?version=1&table=Acceptance15">SR-HM3</a> <a href="155678?version=1&table=Acceptance16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptance17">SR-HM1</a> <a href="155678?version=1&table=Acceptance18">SR-HM2</a> <a href="155678?version=1&table=Acceptance19">SR-HM3</a> <a href="155678?version=1&table=Acceptance20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptance21">SR-HM1</a> <a href="155678?version=1&table=Acceptance22">SR-HM2</a> <a href="155678?version=1&table=Acceptance23">SR-HM3</a> <a href="155678?version=1&table=Acceptance24">SR-HM-Disc</a> <br/> </ul> <b>Efficiencies:</b> <ul> $U(1)$ pair (min): <a href="155678?version=1&table=Efficiency1">SR-HM1</a> <a href="155678?version=1&table=Efficiency2">SR-HM2</a> <a href="155678?version=1&table=Efficiency3">SR-HM3</a> <a href="155678?version=1&table=Efficiency4">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Efficiency5">SR-HM1</a> <a href="155678?version=1&table=Efficiency6">SR-HM2</a> <a href="155678?version=1&table=Efficiency7">SR-HM3</a> <a href="155678?version=1&table=Efficiency8">SR-HM-Disc</a> <br/> </ul> <b>Acceptance times efficiency:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptancetimesefficiency2">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency3">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency4">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptancetimesefficiency6">SR-Comp1</a> <a href="155678?version=1&table=Acceptancetimesefficiency7">SR-Comp2</a> <a href="155678?version=1&table=Acceptancetimesefficiency8">SR-Comp3</a> <a href="155678?version=1&table=Acceptancetimesefficiency1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptancetimesefficiency9">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency10">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency11">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptancetimesefficiency13">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency14">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency15">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptancetimesefficiency17">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency18">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency19">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptancetimesefficiency21">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency22">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency23">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency24">SR-HM-Disc</a> <br/> </ul> <b>Cutflow:</b> <ul> SUSY benchmarks: <a href="155678?version=1&table=Cutflow5">SR-HM1</a> <a href="155678?version=1&table=Cutflow6">SR-HM2</a> <a href="155678?version=1&table=Cutflow7">SR-HM3</a> <a href="155678?version=1&table=Cutflow8">SR-HM-Disc</a> <a href="155678?version=1&table=Cutflow2">SR-Comp1</a> <a href="155678?version=1&table=Cutflow3">SR-Comp2</a> <a href="155678?version=1&table=Cutflow4">SR-Comp3</a> <a href="155678?version=1&table=Cutflow1">SR-Comp-1c</a> <br/> LQ benchmarks: <a href="155678?version=1&table=Cutflow9">SR-HM1</a> <a href="155678?version=1&table=Cutflow10">SR-HM2</a> <a href="155678?version=1&table=Cutflow11">SR-HM3</a> <a href="155678?version=1&table=Cutflow12">SR-HM-Disc</a> <br/> </ul>

Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.

Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.

More…

Search for a new scalar decaying into new spin-1 bosons in four-lepton final states with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 865 (2025) 139472, 2025.
Inspire Record 2842018 DOI 10.17182/hepdata.145171

A search is conducted for a new scalar boson $S$, with a mass distinct from that of the Higgs boson, decaying into four leptons ($\ell =$$e$, $\mu$) via an intermediate state containing two on-shell, promptly decaying new spin-1 bosons $Z_\text{d}$: $S \rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell$, where the $Z_\text{d}$ boson has a mass between 15 and 300 GeV, and the $S$ boson has a mass between either 30 and 115 GeV or 130 and 800 GeV. The search uses proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider with an integrated luminosity of 139 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s}=13$ TeV. No significant excess above the Standard Model background expectation is observed. Upper limits at 95% confidence level are set on the production cross-section times branching ratio, $\sigma(gg \to S) \times \mathcal{B}(S\rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell)$, as a function of the mass of both particles, $m_S$ and $m_{Z\text{d}}$.

32 data tables

Average dilepton mass distribution $\left\langle m_{\ell\ell}\right\rangle = \frac{1}{2}\left(m_{ab} + m_{cd}\right)$ in Signal Region 1.

Average dilepton mass distribution $\left\langle m_{\ell\ell}\right\rangle = \frac{1}{2}\left(m_{ab} + m_{cd}\right)$ in Signal Region 2.

Total invariant mass distribution $m_{4\ell}$ in Signal Region 1.

More…