Measurement of Polarization in pi-p Elastic Scattering from 229 to 390 MeV

Arens, John F. ; Chamberlain, Owen ; Dost, Helmut E. ; et al.
Phys.Rev. 167 (1968) 1261-1267, 1968.
Inspire Record 944940 DOI 10.17182/hepdata.26509

The polarization parameter in elastic π−p scattering has been measured, at the Berkeley 184-in. synchrocyclotron, with the use of a polarized proton target. At 318-, 337-, and 390-MeV incident pion kinetic energy, the angular range from 70° to 180° in the center-of-mass system was covered. At 229 MeV, polarization measurements were made in the angular range 150° to 180°. Phase-shift analyses, using these and other published data, were made at the two lowest energies.

3 data tables match query

No description provided.

No description provided.

No description provided.


Measurement of the reaction gamma p --> K0 Sigma+ at photon energies up to 2.6-GeV.

Lawall, R. ; Barth, J. ; Bennhold, C. ; et al.
Eur.Phys.J.A 24 (2005) 275-286, 2005.
Inspire Record 680746 DOI 10.17182/hepdata.43595

The reaction gamma p --> K0 Sigma+ was measured in the photon energy range from threshold up to 2.6 GeV with the SAPHIR detector at the electron stretcher facility, ELSA, in Bonn. Results are presented on the reaction cross section and the polarization of the Sigma+ as a function of the kaon production angle in the centre-of-mass system, cos(Theta_K^{c.m.}), and the photon energy. The cross section is lower and varies less with photon energy and kaon production angle than that of gamma p --> K+ Sigma0. The Sigma+ is polarized predominantly at cos(Theta_K^{c.m.}) \approx 0. The data presented here are more precise than previous ones obtained with SAPHIR and extend the photon energy range to higher values. They are compared to isobar model calculations.

1 data table match query

Polarization parameter of the SIGMA+ as a function of angle in two photon energy ranges.


Measurement of asymmetry in spin dependent e p resonance region scattering.

Baum, Guenter ; Bergstrom, M.R. ; Clendenin, J.E. ; et al.
Phys.Rev.Lett. 45 (1980) 2000, 1980.
Inspire Record 154062 DOI 10.17182/hepdata.20698

The first measurements are reported of the asymmetry in resonance-region scattering of longitudinally polarized electrons by longitudinally polarized protons. Data have been obtained at Q2=0.5 and 1.5 (GeV/c)2 in the missing-mass range W=1.1−1.9 GeV. Results are compatible with a multipole analysis of single-pion electroproduction. The spin-dependent behavior is consistent with a duality mechanism as in the unpolarized case.

2 data tables match query

ELECTRON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.

PHOTON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.


The Measurement of Polarized Target Asymmetry on gamma p --> pi0 p Below 1-GeV

Fukushima, M. ; Horikawa, N. ; Kajikawa, R. ; et al.
Nucl.Phys.B 136 (1978) 189-200, 1978.
Inspire Record 119548 DOI 10.17182/hepdata.35100

The polarized target asymmetry in the reaction γ p → π 0 p has been measured at c.m. angles of 30°, 80°, 105° and 120° for incident photon energies below 1 GeV. Two decay photons from π 0 were detected in coincidence at 30°, and at the other angles recoil protons and single photons from π 0 were detected. The results are compared with recent phenomenological analyses.

1 data table match query

No description provided.


The Measurement of Polarized Target Asymmetry on gamma p --> pi+ n Below 1.02-GeV

Fukushima, M. ; Horikawa, N. ; Kajikawa, R. ; et al.
Nucl.Phys.B 130 (1977) 486-504, 1977.
Inspire Record 119547 DOI 10.17182/hepdata.35243

The polarized target asymmetry for the process γ p → π + n has been measured for incident photon energies below 1.02 GeV over a range of c.m. angles from 40° to 160°. π + mesons from a polarized butanol target were detected by a magnetic spectrometer. The results are compared with predictions given by existing analyses. A tentative interpretation of the data is performed, and a larger contribution of S-wave resonances is suggested. The photocouplings of dominant resonances were hardly changed by the inclusion of new data and they seem to be almost uniquely determined.

1 data table match query

No description provided.


Rho Production by Virtual Photons

Joos, P. ; Ladage, A. ; Meyer, H. ; et al.
Nucl.Phys.B 113 (1976) 53-92, 1976.
Inspire Record 108749 DOI 10.17182/hepdata.35708

The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.

1 data table match query

DIPION CHANNEL CROSS SECTION.


Photoproduction of Negative Pions on a Polarized Neutron Target in the Resonance Region

Althoff, K.H. ; Beckschulze, H. ; Conrad, R. ; et al.
Nucl.Phys.B 96 (1975) 497-508, 1975.
Inspire Record 99642 DOI 10.17182/hepdata.31932

At the Bonn 2.5 GeV electron synchrotron the first measurements of the target asymmetry for the reaction γ + n ↑ → π − + p have been performed. The negative pions were detected in a magnetic spectrometer at a constant pion c.m. angle of 40° and photon energies between 0.45 GeV and 2.0 GeV. Deuterated butanol was used as target material. The polarization of the deuterons was about 16%. The results show a significant difference from the previously measured π + asymmetry.

1 data table match query

No description provided.


Measurement of Polarized Target Asymmetry on $\gamma n \to \pi^- p$ Around the Second Resonance Region

Fujii, K. ; Hayashii, H. ; Iwata, S. ; et al.
Nucl.Phys.B 187 (1981) 53-70, 1981.
Inspire Record 156223 DOI 10.17182/hepdata.34260

The polarized target asymmetry for γ n→ π − p was measured over the second resonance region from 0.55 to 0.9 GeV at pion c.m. angles between 60° and 120°. A double-arm spectrometer was used with a deuterated butanol target to detect both the pion and the proton, thus considerably improving the data quality. Including the new data in the amplitude analysis, the radiative decay widths of three resonances were determined more accurately than before. The results are compared with various quark models.

7 data tables match query

PHOTON ENERGY IS IN THE NEUTRON REST FRAME.

PHOTON ENERGY IS IN THE NEUTRON REST FRAME.

PHOTON ENERGY IS IN THE NEUTRON REST FRAME.

More…

Negative-pion photoproduction from neutrons by linearly polarized photons in the first resonance region

Kondo, K. ; Miyachi, T. ; Ukai, K. ; et al.
Phys.Rev.D 9 (1974) 529-533, 1974.
Inspire Record 93115 DOI 10.17182/hepdata.21954

The angular dependence of the asymmetry for negative-pion photoproduction on neutrons by linearly polarized photons has been measured for photon energies 260, 300, 350, 400, 450, and 500 MeV at center-of-mass angles 60°, 75°, 90°, 150°, and 120°. The results are compared with theoretical models of low-energy single-pion photoproduction. The observed asymmetry below 400 MeV shows good agreement with predictions of dispersion-theoretical models by Berends, Donnachie, and Weaver and by Schwela. The asymmetry values in the 400-500 MeV energy region suggest that smaller M1− amplitude is more favorable.

2 data tables match query

No description provided.

No description provided.


Polarization of the Recoil Proton from pi0 Photoproduction in Hydrogen

Maloy, J.O. ; Peterson, V.Z. ; Salandin, G.A. ; et al.
Phys.Rev. 139 (1965) B733-B746, 1965.
Inspire Record 944960 DOI 10.17182/hepdata.26657

The polarization of the recoil proton in neutral single-pion photoproduction from hydrogen, γ+p→p+π0, has been measured for pion center-of-mass angles near 90° at 7 photon energies from 450 to 900 MeV. The polarization rises to a maximum of 0.58 near 600 MeV and is still 0.42 at 900 MeV. The sign of the polarization is negative in the sense of k×q, where k is the photon momentum and q is the pion momentum. The measured values are given as functions of laboratory photon energy and c.m. pion angle as follows: 450 MeV, 109°, -0.16±0.14; 525 MeV, 84°, -0.36±0.19; 585 MeV, 86°, -0.58±0.15; 660 MeV, 77°, -0.51±0.17; 755 MeV, 76°, -0.55±0.15; 810 MeV, 89°, -0.45±0.17; 895 MeV, 90°, -0.42±0.16. The recoil protons were momentum-analyzed with a magnetic spectrometer. Nuclear emulsion was used as scatterer and detector. The emulsion technique is discussed in detail. The number of individual scatterings in emulsion used for each measurement varied between 750 and 1000.

1 data table match query

No description provided.