We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
First exclusive data for the $pp \to nn\pi^+\pi^+$ reaction have been obtained at CELSIUS with the WASA detector setup at a beam energy of $T_p$ = 1.1 GeV. Total and differential cross sections disagree with theoretical calculations, which predict the $\Delta\Delta$ excitation to be the dominant process at this beam energy. Instead the data require the excitation of a higher-lying $\Delta$ state, most likely the $\Delta(1600)$, to be the leading process.
Total cross section.
Distribution of the invariant mass of the PI+PI+ system.
Distribution of the cosine of the PI+_PI+ opening angle DELTA at an incident kinetic energy of 1.1 GeV.
We have measured inclusive data on $K^+$-meson production in $pp$ collisions at COSY J\"ulich close to the hyperon production threshold and determined the hyperon-nucleon invariant mass spectra. The spectra were decomposed into three parts: $\Lambda p$, $\Sigma^0p$ and $\Sigma^+n$. The cross section for the $\Sigma^+n$ channel was found to be much smaller than a previous measurement in that excess energy region. The data together with previous results at higher energies are compatible with a phase space dependence.
Total cross section for P P --> K+ SIGMA+ N. Errors are combined statistics and systematics.
Deduced total cross section for P P --> K+ P LAMBDA.
Deduced total cross section for P P --> K+ SIGMA0 P.
pp interactions at 11 momenta in the range 0.9 to 2.0 GeV/ c have been studied. The elastic angular distributions, covering the c.m. angular range 22°–90°, agree in general with Hoshizaki's phase-shift analysis which shows the looping 1 D in and 3 F 3 amplitudes in the Argand diagram. About 80% of pn π + events come from the n Δ ++ state at all momenta above 1.2 GeV/ c . The behavior of the density matrix elements of the Δ ++ show no momentum or angular dependence. A large fraction of pp π 0 events also come from the p Δ + state at all momenta above 1.2 GeV/ c . The behavior of the Δ + density matrix elements is similar to that for the case of Δ ++ .
No description provided.
No description provided.
No description provided.