We have used the Fermilab 30-in. bubble-chamber-hybrid spectrometer to study neutral-strange-particle production in the interactions of 200-GeV/c protons and π+ and K+ mesons with nuclei of gold, silver, and magnesium. Average multiplicities and inclusive cross sections for K0 and Λ are measured, and a power law is found to give a good description of their A dependence. The exponent characterizing the A dependence is consistent with being the same for K0 and Λ production, and also the same for proton and π+ beams. Average K0 and Λ multiplicities, as well as their ratio, have been measured as functions of the numbers of projectile collisions νp and secondary collisions νs in the nucleus, and indicate that rescattering contributes significantly to enhancement of Λ production but not to K0 production. The properties of events with multiple K0's or Λ's also corroborate this conclusion. K0 rapidities are in the central region and decrease gently with increasing νp, while Λ rapidities are in the target-fragmentation region and are independent of νp. K0 and Λ multiplicities increase with the rapidity loss of the projectile, but their rapidities do not.
No description provided.
No description provided.
No description provided.
We report results on D 0 and D + production in proton-emulsion interactions at s =38.7 GeV. A fit to the form (1−| x F |) n exp (−bp 2 T ) yields n=6.9 +1.9 −1.8 and b=0.84 +0.10 −0.08 (GeV/ c ) −2 . The total inclusive cross section, is assuming linear A dependence, is measured to be 38±3(stat.) ±13 (sys.) μ b for the D 0 and 38±9±14 μ b for the D + . A comparison of these results with previous measurements indicates that nuclear effects do not strongly influence charm production. The predictions of QCD are in good agreement with our data.
The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
Linear A-dependence. Different modes of the charm mesons detection were used (see text for detail).
Muon-pair production has been measured in pCu, pU, OCu, OU and SU collisions at 200 GeV per nucleon. The cross sections are compatible with the atomic number dependence ( A proj. A targ. ) α where α =0.91±0.04 for the J/ψ resonance and α =1.01±0.04 for muon pairs produced in the mass continuum between 1.7 and 2.7 GeV/ c 2 .
Cross sections fitted with SIG0*(A(P=1)*A(P=2))** ALPHA. ALPHA is coded here as POWER(N=A*A,YN=SIG).
Cross sections fitted with SIG0*(A(P=1)*A(P=2))** ALPHA. ALPHA is coded here as POWER(N=A*A,YN=SIG).
No description provided.
Results are presented on the production characteristics of charmed particles obtained from the WA75 emulsion hybrid experiment. The events, selected by the presence of a muon with a high momentum transverse to the beam direction, were located and analysed in nuclear emulsions. Inclusive and correlation properties are systematically compared with the lowest-order QCD calculations for DD hadroproduction. Results concerning the correlation properties indicate some contribution from next-to-leading order [O(α_S^3)] subprocesses.
459 DECAYS: 119 D0, 119 DBAR0, 115 D+, 106 D-.
177 PAIRS: 38 D0 DBAR0, 46 D0 D-, 45 D+ DBAR0, 48 D+ D-.
120 PAIRS: 38 D0 DBAR0, 31 D0 D-, 32 D+ DBAR0, 19 D+ D-.
We present new measurements of π0 production at high transverse momenta (pT) for π− and p interactions on Be and Cu targets at 500 GeV/c. The observed dependence of the yields as a function of pT and rapidity (y) is compared with expectations from leading-log QCD over a kinematic range in which the inclusive cross sections fall by more than 4 order of magnitude.
No description provided.
A dependence parameterized as A**POWER for both Pi- and P interactions.
Low mass muon pair production at high P T and low X F studied in pU, OU and SU 200 GeV per nucleon react ions. When energy density or projectile mass are increased, φ production is enhanced as compared with the yield of muon pairs in the mass continuum (1.7< M μμ < 2.4 GeV/ c 2 ), whereas the production of ω and ϱ, experimentally unresolved, remains approximately constant. This φ enhancement is in agreement with predictions based on quark-gluon plasma formation and, together with the previously reported J/Ψ suppression, puts severe constraints on a purely hadronic description of nucleus-nucleus collisions.
The cross sections are parametrized as A**POWER.
We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order
Differential single diffraction cross section.
Differential single diffraction cross section.
Differential single diffraction cross section.
Calorimeter measurements of dσ de t for pp, dd, pα , and αα collisions at S nn =31.5 GeV are presented for the pseudorapidity interval | η cm | ⩽ 0.7, extending over eight decades to E t ⩾ 30 GeV. The data are compared with models that predict nuclear cross sections directly from pp data, under the assumption of independent nucleon scatters.
The distributions are fitted D(SIG)/D(ET)=CONST*ET**POWER*EXP(-SLOPE*ET).
None
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
The production of the Jψ resonance in 125-GeV/c p¯ and φ− interactions with Be, Cu, and W targets has been measured. The cross section per nucleon for Jψ production is suppressed in W interactions relative to the lighter targets, especially at large values of Feynman x, which is opposite to the expectation from the various explanations of the European Muon Collaboration effect. Models incorporating modifications of the gluon structure functions in heavy targets show qualitative agreement with the data.
No description provided.
No description provided.
No description provided.