Measurement of cold nuclear matter effects for inclusive $J/\psi$ in $p$+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 825 (2022) 136865, 2022.
Inspire Record 1946829 DOI 10.17182/hepdata.114371

Measurement by the STAR experiment at RHIC of the cold nuclear matter (CNM) effects experienced by inclusive $J/\psi$ at mid-rapidity in 0-100%$p$+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV is presented. Such effects are quantified utilizing the nuclear modification factor, $R_{p\mathrm{Au}}$, obtained by taking a ratio of $J/\psi$ yield in $p$+Au collisions to that in $p$+$p$ collisions scaled by the number of binary nucleon-nucleon collisions. The differential $J/\psi$ yield in both $p$+$p$ and $p$+Au collisions is measured through the dimuon decay channel, taking advantage of the trigger capability provided by the Muon Telescope Detector in the RHIC 2015 run. Consequently, the $J/\psi$$R_{p\mathrm{Au}}$ is derived within the transverse momentum ($p_{\mathrm{T}}$) range of 0 to 10 GeV/$c$. A suppression of approximately 30% is observed for $p_{\mathrm{T}}<2$ GeV/$c$, while $J/\psi$ $R_{p\mathrm{Au}}$ becomes compatible with unity for $p_{\mathrm{T}}$ greater than 3 GeV/$c$, indicating the $J/\psi$ yield is minimally affected by the CNM effects at high $p_{\mathrm{T}}$. Comparison to a similar measurement from 0-20% central Au+Au collisions reveals that the observed strong $J/\psi$ suppression above 3 Gev/$c$ is mostly due to the hot medium effects, providing strong evidence for the formation of the quark-gluon plasma in these collisions. Several model calculations show qualitative agreement with the measured $J/\psi$ $R_{p\mathrm{Au}}$, while their agreement with the $J/\psi$ yields in $p$+$p$ and $p$+Au collisions is worse.

3 data tables

Inclusive J/psi cross section times branching ratio of the dimuon decay channel in p+p collisions at 200 GeV. Global uncertainty of 12.5% not shown.

Inclusive J/psi cross section times branching ratio of the dimuon decay channel in p+Au collisions at 200 GeV. Global uncertainty of 1.5% not shown.

R_pAu of inclusive J/psi in p+Au collisions at 200 GeV. Global uncertainty of 13.9% not shown.


Measurement of inclusive $J/\psi$ suppression in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV through the dimuon channel at STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 797 (2019) 134917, 2019.
Inspire Record 1737650 DOI 10.17182/hepdata.91135

$J/\psi$ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive $J/\psi$ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The $J/\psi$ yields are measured in a wide transverse momentum ($p_{\rm{T}}$) range of 0.15 GeV/$c$ to 12 GeV/$c$ from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the $J/\psi$ yield is suppressed by a factor of approximately 3 for $p_{\rm{T}}>5$ GeV/$c$ relative to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The $J/\psi$ nuclear modification factor displays little dependence on $p_{\rm{T}}$ in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by $J/\psi$ mesons in the QGP.

25 data tables

Invariant yield of inclusive J/PSI(1S) times branching ratio to the dimuon decay in 0-80% Au+Au collisions at 200 GeV

Invariant yield of inclusive J/PSI(1S) times branching ratio to the dimuon decay in 0-20% Au+Au collisions at 200 GeV

Invariant yield of inclusive J/PSI(1S) times branching ratio to the dimuon decay in 20-40% Au+Au collisions at 200 GeV

More…

Identified particle distributions in p p and Au + Au collisions at s**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 112301, 2004.
Inspire Record 630160 DOI 10.17182/hepdata.100591

Transverse mass and rapidity distributions for charged pions, charged kaons, protons and antiprotons are reported for sqrt{s_NN}=200 GeV pp and Au+Au collisions at RHIC. The transverse mass distributions are rapidity independent within |y|<0.5, consistent with a boost-invariant system in this rapidity interval. Spectral shapes and relative particle yields are similar in pp and peripheral Au+Au collisions and change smoothly to central Au+Au collisions. No centrality dependence was observed in the kaon and antiproton production rates relative to the pion production rate from medium-central to central collisions. Chemical and kinetic equilibrium model fits to our data reveal strong radial flow and relatively long duration from chemical to kinetic freeze-out in central Au+Au collisions. The chemical freeze-out temperature appears to be independent of initial conditions at RHIC energies.

15 data tables

invariant yield as function of transverse mass for $\pi^{\pm},K^{\pm}$ and inclusive $p$ and $\bar{p}$ at mid-rapidity ($|y|<0.1$) for pp (bottom) and Au+Au events from $70-80\%$ (second bottom) to the $0-5\%$ centrality bin (top). Statistical and point-to-point systematic errors have been added in quadrature. Additional correlated systematic error due to uncertainty in the normalization is estimated to be $5\%$. Open circles are for positive particles (all proton spectra are scaled by 0.8), and closed triangles are for negative particles. The curves shown (Bose-Einstein fits for $\pi^-$ and blast-wave model fits for $K^-$ and $\bar{p}$) are explained in the text.

invariant yield as function of transverse mass for $\pi^{\pm},K^{\pm}$ and inclusive $p$ and $\bar{p}$ at mid-rapidity ($|y|<0.1$) for pp (bottom) and Au+Au events from $70-80\%$ (second bottom) to the $0-5\%$ centrality bin (top). Statistical and point-to-point systematic errors have been added in quadrature. Additional correlated systematic error due to uncertainty in the normalization is estimated to be $5\%$. Open circles are for positive particles (all proton spectra are scaled by 0.8), and closed triangles are for negative particles. The curves shown (Bose-Einstein fits for $\pi^-$ and blast-wave model fits for $K^-$ and $\bar{p}$) are explained in the text.

invariant yield as function of transverse mass for $\pi^{\pm},K^{\pm}$ and inclusive $p$ and $\bar{p}$ at mid-rapidity ($|y|<0.1$) for pp (bottom) and Au+Au events from $70-80\%$ (second bottom) to the $0-5\%$ centrality bin (top). Statistical and point-to-point systematic errors have been added in quadrature. Additional correlated systematic error due to uncertainty in the normalization is estimated to be $5\%$. Open circles are for positive particles (all proton spectra are scaled by 0.8), and closed triangles are for negative particles. The curves shown (Bose-Einstein fits for $\pi^-$ and blast-wave model fits for $K^-$ and $\bar{p}$) are explained in the text.

More…