We have used data from the OPAL detector at LEP to reconstruct D ∗ mesons and secondary vertices in jets. We have studied the hemispheres of the events opposite these jets and obtain values of the hemisphere charged particle multiplicity in Z 0 → u u , d d , s s , Z 0 → c c and Z 0 → b b events of n uds = 10.41 ± 0.06 ± 0.09 ± 0.19 ; n c = 10.76 ± 0.20 ± 0.14 ± 0.19 ; n b = 11.81 ± 0.01 ± 0.12 ± 0.21 where the first errors are statistical, the second systmatic and the third a common scale uncertainty. We find the difference in total charged particle multiplicity between c and b quark events and light (u, d, s) quark events to be δ cl = 0.69 ± 0.51 ± 0.35; δ bl = 2.79 ± 0.12 ± 0.27. These results are compared to the predictions of various models and QCD based calculations.
Second systematic error is a common scale uncertainty.
Difference in the TOTAL charged particle multiplicity.
The production of the octet and decuplet baryons Λ, Ξ − , Σ (1385) ± , Ξ(1530) 0 and Ω − and the corresponding antibaryons has been measured in a sample of 485 000 hadronic Z 0 decays. Results on differential and integrated cross sections are presented. The differential cross section of Λ baryons is found to be softer than the one predicted by the Jetset and Herwig Monte Carlo generators. The measured decuplet yields are found to disagree with the simple diquark picture where only one tuning parameter for spin 1 diquarks is used. Comparisons of the momentum spectra for Λ and Ξ − with the predictions of an analytical QCD formula are also presented.
No description provided.
No description provided.
No description provided.
We present a study of the global event shape variables thrust and heavy jet mass, of energy-energy correlations and of jet multiplicities based on 250 000 hadronic Z 0 decays. The data are compared to new QCD calculations including resummation of leading and next-to-leading logarithms to all orders. We determine the strong coupling constant α s (91.2 GeV) = 0.125±0.003 (exp) ± 0.008 (theor). The first error is the experimental uncertainty. The second error is due to hadronization uncertainties and approximations in the calculations of the higher order corrections.
Measured EEC distribution corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.
Measured average jet multiplicities for the K_PT algorithm. All numbers are corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.
Value of strong coupling constant, alpha_s, determined from the data. First error is experimental, the second is theoretical.