We present the first study of the energy dependence of $p_t$ angular correlations inferred from event-wise mean transverse momentum $<p_{t} >$ fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related $<p_{t}>$ fluctuations near 10 GeV.
Per-particle fluctuation dependence on pseudorapidity scale $\delta\eta$ in central collisions.
Per-particle fluctuation dependence on pseudorapidity scale $\delta\eta$ in central collisions.
Centrality dependence of $<p_t>$ fluctuations in the STAR acceptance for four energies. $\nu$ is the mean participant path length (please consult text).
We report the measurements of $\Sigma (1385)$ and $\Lambda (1520)$ production in $p+p$ and $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV from the STAR collaboration. The yields and the $p_{T}$ spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central $Au+Au$ collisions. Our results indicate that there may be a time-span between chemical and thermal freeze-out during which elastic hadronic interactions occur.
The transverse mass spectra for $\Sigma^{∗}$ and $\Lambda^{∗}$ in p+p and in central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Statistical and systematical errors are included.
Resonance to stable particle ratios for p + p and Au + Au collisions. The ratios are normalized to unity in p + p and compared to thermal and UrQMD model predictions for central Au + Au [8, 12]. Statistical and systematic uncertainties are included in the error bars. (In the paper figure, K*/K dNCh/dy axis is shifted +30 for visual purposes to seperate the error bar contributions.)
The STAR Collaboration at RHIC reports measurements of azimuthal correlations of high transverse momentum (p_T) charged hadrons in Au+Au collisions at higher p_T than reported previously. As p_T is increased, a narrow, back-to-back peak emerges above the decreasing background, providing a clear dijet signal for all collision centralities studied. Using these correlations, we perform a systematic study of dijet production and suppression in nuclear collisions, providing new constraints on the mechanisms underlying partonic energy loss in dense matter.
Centrality dependence (number of participants Npart) of near-side ($|\Delta\phi|$<0.63) yields in d+Au and Au+Au collisions at 200 GeV, for $8 < p_T^{trig} < 15$ GeV/c and various $p_T^{assoc}$ ranges. Data for $3 < p_T^{assoc} < 4$ GeV/c are scaled by 1.5 for clarity. The point with the smallest Npart is the yield in d+Au collisions and the others are those in Au+Au collisions.
Centrality dependence (number of participants Npart) of away-side ($|\Delta\phi-\pi|$<0.63) yields in d+Au and Au+Au collisions at 200 GeV, for $8 < p_T^{trig} < 15$ GeV/c and various $p_T^{assoc}$ ranges. Data for $3 < p_T^{assoc} < 4$ GeV/c are scaled by 1.5 for clarity. The point with the smallest Npart is the yield in d+Au collisions and the others are those in Au+Au collisions.
Trigger-normalized fragment distribution $D(z_T)$ with $8 < p_T^{trig} < 15$ GeV/c for near-side ($|\Delta\phi|$<0.63) correlations in d+Au collisions at 200 GeV.
We present a measurement of the t anti-t production cross section in p anti-p collisions at s**(1/2) = 1.96 TeV which uses events with an inclusive signature of significant missing transverse energy and jets. This is the first measurement which makes no explicit lepton identification requirements, so that sensitivity to W --> tau nu decays is maintained. Heavy flavor jets from top quark decay are identified with a secondary vertex tagging algorithm. From 311 pb-1 of data collected by the Collider Detector at Fermilab we measure a production cross section of 5.8 +/- 1.2(stat.)+0.9_-0.7(syst.) pb for a top quark mass of 178 GeV/c2, in agreement with previous determinations and standard model predictions.
TTBAR production cross section.
We study the processes e+ e- --> 3(pi+pi-)gamma, 2(pi+pi-pi0)gamma and K+ K- 2(pi+pi-)gamma, with the photon radiated from the initial state. About 20,000, 33,000 and 4,000 fully reconstructed events, respectively, have been selected from 232 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the effective e+e- center-of-mass energy, so that these data can be compared with the corresponding direct e+e- measurements. From the 3(pi+pi-), 2(pi+pi-pi0) and K+ K- 2(pi+pi-) mass spectra, the cross sections for the processes e+ e- --> 3(pi+pi-), e+ e- --> 2(pi+pi-pi0) and e+ e- --> K+ K- 2(pi+pi-) are measured for center-of-mass energies from production threshold to 4.5 GeV. The uncertainty in the cross section measurement is typically 6-15%. We observe the J/psi in all these final states and measure the corresponding branching fractions.
The cross section for E+ E- --> 3PI+ 3PI- as measured with the ISR data. Errors are statistical only.
The cross section for E+ E- --> 2PI+ 2PI- 2PI0 as measured with the ISR data. Errors are statistical only.
The cross section for E+ E- --> K+ K- 2PI+ 2PI- as measured with the ISR data. Errors are statistical only.
Measurements of the production of forward pi0 mesons from p+p and d+Au collisions at sqrt(s_NN)=200 GeV are reported. The p+p yield generally agrees with next-to-leading order perturbative QCD calculations. The d+Au yield per binary collision is suppressed as eta increases, decreasing to ~30% of the p+p yield at <eta>=4.00, well below shadowing expectations. Exploratory measurements of azimuthal correlations of the forward pi0 with charged hadrons at eta~0 show a recoil peak in p+p that is suppressed in d+Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei.
Inclusive $\pi^{0}$ cross section for p+p collisions versus the leading $\pi^{0}$ energy ($E_{\pi}$) averaged over 5 GeV bins at fixed pseudorapidity ($\eta$). The error bars combine statistical and point-to-point systematic errors. The curves are NLO pQCD calculations using two sets of fragmentation functions (FF).
Inclusive $\pi^{0}$ cross section per binary collision for d+Au collisions, as in Fig. 1. The curves are calculations described in the text. (Inset) Diphoton invariant mass spectrum for data (stars), normalized to simulation (histogram).
Nuclear modification factor ($R_{dAu}$) for minimum-bias d+Au collisions versus transverse momentum ($p_{T}$). The solid circles are for $\pi^{0}$ mesons. The open circles and boxes are for negative hadrons [10]. The error bars are statistical, while the shaded boxes are point-to-point systematic errors. (Inset) $R_{dAu}$ for $\pi^{0}$ mesons with the ratio of curves in Figs. 2 and 1.
We present the transverse momentum (pT) spectra for identified charged pions, protons and anti-protons from p+p and d+Au collisions at \sqrts_NN = 200 GeV. The spectra are measured around midrapidity (|y| < 0.5) over the range of 0.3 < pT < 10 GeV/c with particle identification from the ionization energy loss and its relativistic rise in the Time Projection Chamber and Time-of-Flight in STAR. The charged pion and proton+anti-proton spectra at high pT in p+p and d+Au collisions are in good agreement with a phenomenological model (EPOS) and with the next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations with a specific fragmentation scheme and factorization scale. We found that all proton, anti-proton and charged pion spectra in p+p collisions follow xT-scalings for the momentum range where particle production is dominated by hard processes (pT > 2 GeV/c). The nuclear modification factor around midrapidity are found to be greater than unity for charged pions and to be even larger for protons at 2 < pT < 5 GeV/c.
Transverse momentum distribution for $\pi^+$ production in d+Au minbias events in the mid rapidity region, $|y|<0.5$.
Transverse momentum distribution for $\pi^+$ production in p+p NSD events in the mid rapidity region, $|y|<0.5$.
Transverse momentum distribution for $\pi^+$ production in d+Au collisions with centrality 0-20% in the mid rapidity region, $|y|<0.5$.
We have updated our measurement of the cross section for e^+e^- -> psi(3770) -> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) -> hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96, 092002 (2006). Simultaneous with this arXiv update, we have published an erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have corrected a mistake in the computation of the error on the difference of the cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) -> DDbar. We have also used a more recent CLEO measurement of cross section for e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.
Measured cross section for the process E+ E- --> PSI(3770) --> hadrons.
We report on a measurement of the inclusive jet production cross section in pp-bar collisions at sqrt{s} = 1.96 TeV using data collected with the upgraded Collider Detector at Fermilab in Run II (CDF II) corresponding to an integrated luminosity of 385 pb^-1. Jets are reconstructed using the kt algorithm. The measurement is carried out for jets with rapidity 0.1 < | yjet | < 0.7 and transverse momentum in the range 54 < ptjet < 700 GeV/c. The measured cross section is in good agreement with next-to-leading order perturbative QCD predictions after the necessary non-perturbative parton-to-hadron corrections are included.
Measured jet differential cross section as a function of PT.
We present a measurement of the inclusive jet cross section in ppbar interactions at sqrt{s}=1.96 TeV using 385 pb^{-1} of data collected with the CDF II detector at the Fermilab Tevatron. The results are obtained using an improved cone-based jet algorithm (Midpoint). The data cover the jet transverse momentum range from 61 to 620 GeV/c, extending the reach by almost 150 GeV/c compared with previous measurements at the Tevatron. The results are in good agreement with next-to-leading order perturbative QCD predictions using the CTEQ6.1M parton distribution functions.
The inclusive jet cross section corrected to the hadron level.
The inclusive jet cross section corrected to the parton level.