The differential cross section for elastic scattering of 3.63−GeVc π− mesons on protons was studied with a hydrogen bubble chamber, the emphasis being on large-angle scattering. From 90 to 180° in the barycentric system, the cross section is roughly flat with an average value of 2.7±1.0 μb/sr. Near and at 180°, there may be a slight peak of magnitude 10±6 μb/sr. But if such a peak exists, it is only one-third to one-fourth the size of the 180° peak found in 4.0 GeVc π++p elastic scattering. In addition to comparison with other π−+p and π++p large-angle elastic-scattering measurements, this measurement is compared with large-angle p+p elastic scattering. In the forward hemisphere a small peak or a plateau exists at cos θ*=+0.60. This appears to be a second diffraction maximum such as has been found in lower-energy π+p elastic scattering. A survey of indications of such a second diffraction maximum in other π+p measurements shows that it always occurs in the vicinity of −t=1.2 (GeVc)2, where t is the square of the four-momentum transfer. As the incident momentum increases, the relative size of this second maximum decreases.
The differential cross section for neutron-deuteron elastic scattering was measured for four-momentum transfers 0.3 < − t < 2.0 (GeV/c) 2 with incident neutron momenta between 6 and 12.5 GeV/c. The measurement was made with spark chambers at the Argonne ZGS. Results are compared with proton-deuteron elastic scattering at comparable energies as a test of isospin invariance in strong interactions and with the predictions of the Glauber multiple scattering theory. Very good agreement is found.
We have measured, as a function of transverse momentum (p⊥), the invariant cross section Edσd3p for the production of π±, K±, p, p¯, d, and d¯ in proton collisions with a tungsten (W) target at incident proton energies of 200, 300, and 400 GeV. The measurements were made in the region of 90° in the c.m. system of the incident proton and a single nucleon at rest. Measurements were also made with 300-GeV protons incident on Be, Ti, and W targets of equal interaction length. These p-nucleus measurements, which show a strong dependence on atomic number at high p⊥, were used to extract effective proton-nucleon cross sections by extrapolation to atomic number unity. At large values of the scaling variable x⊥=2p⊥s, where s is the square of the c.m. energy, the pion data are found to be well represented by the expression (s)−ne−ax⊥, with n=11.0±0.4 and a=36.0±0.4. x⊥<0.35, where similar measurements have been made at the CERN ISR, our data are in good agreement with the ISR data.
Antiproton-proton annihilations into final states containing one or two K10-mesons are studied on the basis of 450 000 pictures from the CERN 2 m HBC. The experiment covers the domain of antiproton incident momentum from 1.50 to 2.04 GeV/c. The resonance production rates are computed for the most abundant channels. The K10K10 threshold effect is explained through the inelastic channel π+π− → K10K10. The decay modes D, E → δ±(975)π∓, δ±(975) → K10K± are pointed out. The strange mesons C and C′ are observed in these annihilations and come mainly from the two-body channels \(p\bar p\) → (C, C′)K and\(p\bar p\) → (C, C′)K*.
We have measured differential cross sections for K−p→Σ+π− and π−p→pπ− at 3.0 and 5.1 GeV/c near the backward direction. At 3.0 GeV/c both have a dip near −u∼0.1 (GeV/c)2. At 5.1 GeV/c, dσdu for π−p→pπ− falls exponentially with slope 3.8±0.1 (GeV/c)−2 whereas dudσ for K−p→Σ+π− exhibits a decreasing slope for larger |u|. These data are discussed in terms of SU(3), and the relative importance of the helicity-flip and -non-flip amplitudes is investigated.
We have observed muons produced directly in Cu and W targets by 300-GeV incident protons. We find a yield of muons which is approximately a constant fraction (0.8·10−4) of the pion yield for both positive and negative charges and for transverse momenta between 1.5 and 5.4 GeV/c.
Inclusive cross sections and one-particle inclusive spectra are given for neutral K, Λ and Λ produced in K − p and K + p interactions at 32 GeV/ c in the 4.5 m Mirabelle hydrogen bubble chamber at the Serpukhov accelerator. Cross sections for associated production are also given, and the energy dependences of the cross sections and of the x distributions in the central and in the fragmentation regions are discussed.
Inclusive cross sections and longitudinal momentum distributions are presented for γ rays produced in K − p and K + p interactions at 32 GeV/c in the 4.5 m Mirabelle hydrogen bubble chamber at the Serpukhov accelerator. The average longitudinal and transverse momentum of neutral pions and the average π 0 multiplicity ▪ 〈 n π 0〉 are estimated. It is found that 〈 n π 0〉 is an increasing function of the number of charged prongs.
We have measured the inclusive production of massive dimuons (7<~Mμμ<~11 GeV/c2) by 200-, 300-, and 400-GeV protons incident on Cu in order to check whether the dimensionless cross section Mμμ3[dσdMμμdy]y=0 is a function of Mμμ2s alone, where s is the square of the c.m. energy. The results support the scaling hypothesis.
This Letter reports measurements of the ratios of $\pi$, K, and p production at large values of transverse momentum in $\pi^- −p$ collisions. The charge ratios, such as $\frac {\pi^−} {\pi^+}$, $\frac {K^−} {K^+}$, and $\frac {\overline{p}}{p}$ are seen to be quite different from those measured in p −p collisions. These ratios are sensitive tests of hard-scattering models, and are compared with theoretical predictions. The particle ratios have also been studied as a function of center-of-mass angle ($\theta^*$) at $\theta^*$ = 90°, 77°, and 60°.