Measurements have been made on Compton scattering for photon energies between 5 and 17 GeV and t values from -0.06 to -1.1 (GeVc)2. The data were obtained by performing a coincidence between the Stanford Linear Accelerator Center 1.6-GeVc spectrometer and a Lucite shower counter. The scattering appears diffractive out to high t values, but the cross sections seem not to be in good agreement with the prediction of a strict vector-meson-dominance model.
No description provided.
No description provided.
No description provided.
Inelastic differential cross sections have been measured for π±p, K±p, and p±p at 140- and 175-GeV/c incident momentum over a |t| range from 0.05 to 0.6 GeV2 and covering a missing-mass region from 2.4 to 9 GeV2. For Mx2 greater than 4 GeV2, the invariant quantity Mx2d2σdtdMx2 was found to be independent of Mx2 at fixed t and could be adequately described by a simple triple-Pomeron form. The values obtained for the triple-Pomeron couplings are identical within statistics for all channels.
Data from 140 GeV and 175 GeV are combined. The distributions are fit to CONST*(SLOPE(C=1)*T+SLOPE(C=2)*T**2).
The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.
ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.
In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.
SYSTEMATIC CORRECTIONS INCLUDED IN ERRORS.
FROM FIT, FORWARD D(SIG)/DT = 31.84 +- 0.68 MB/GEV**2, AND AGREES WITH OPTICAL POINT FROM MEASURED TOTAL CROSS SECTIONS.
A missing mass spectrometer search was made for several two-body, double charge exchange reactions, including backward K −p and p̄p elastic scattering at 8 and 16 GeV/ c and small momentum transfer. No examples of any of these processes were observed.
'1'. '2'. '3'.
No description provided.
In a single-arm spectrometer experiment, high-precision measurements of dσdt for π−p, K−p, and p¯p elastic scattering have been made at 8 and 16 GeV/c. The π−p data show rich structure at 8 GeV/c, indicative of strong non-Pomeron contributions, while the 16-GeV/c data are much smoother. For −t≳1 (GeV/c)2 there is a strong s dependence while there is very little for −t<1 (GeV/c)2. For p¯p scattering the forward region is smoothly diffractive for −t<0.4 (GeV/c)2 and shows antishrinkage. The exponential slope parameter b is measured to be 12.36 ± 0.04 (GeV/c)−2 at 8 GeV/c and 11.40 ± 0.04 (GeV/c)−2 at 16 GeV/c. The structure near −t=0.6 (GeV/c)2 seen at lower energies is still obvious at 16 GeV/c. The K−p data show some structure at 8 GeV/c, but can be represented adequately by a quadratic exponential form. At 16 GeV/c the K−p angular distribution shows antishrinkage and lies above the 8-GeV/c cross section for 0.11<−t<0.8 (GeV/c)2.
No description provided.
No description provided.
No description provided.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).
Angular distributions are presented for p¯−p elastic scattering at 8 and 16 GeV/c for |t|<1.3 (GeV/c)2. At both energies there is structure in the differential cross sections in the region 0.5<~|t|<~1.0 (GeV/c)2, similar to that observed at lower energies. The diffraction peak continues to expand with increasing incident momentum.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.
No description provided.
No description provided.
No description provided.
We have analyzed the two-prong final states in π+p interactions at 3.9 GeVc. Our result for elastic scattering is σ (elastic) = 6.50±0.1 mb (statistical error only). We find the elastic slope to be 6.61±0.14 (GeVc)−2. We find the elastic forward cross section to be 40.0±1.4 mb(GeVc)2. We have applied a longitudinal-momentum analysis to the one-pion-production channel. We find the cross section for the reaction π++p→π++π0+p to be 2.30±0.06 mb and that for π++p→π++π++n to be 1.45±0.05 mb. For resonance-production cross sections in these channels we find Δ(1236)=0.60±0.07 mb, ρ(760)=0.86±0.06 mb, and diffraction dissociation = 1.69±0.11 mb. We find that we can satisfactorily fit all distributions in the one-pion-production channel without assuming any phase-space production. In the missing-mass channel we observe dominant Δ++(1236) production plus evidence for A2+ production.
No description provided.
No description provided.
No description provided.