Charged particle cross-sections in photoproduction and extraction of the gluon density in the photon

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 10 (1999) 363-372, 1999.
Inspire Record 477556 DOI 10.17182/hepdata.44170

Photoproduction data collected with the H1 detector at HERA in 1994 are used to study the cross-sections for inclusive charged particle production and the structure of the photon. The differential cross-sections dsigma/dpT2, for |eta| < 1 in the HERA laboratory frame, and dsigma/deta for pT > 2 GeV/c and pT > 3 GeV/c have been measured. Model calculations of these cross-sections, based on perturbative QCD, indicate that the results are sensitive to the parton densities of the photon as well as to higher order effects, which are phenomenologically treated by multiple interactions. This sensitivity is exploited to determine the leading order x_gamma distribution of partons in the photon using a new method based on high pT charged particles. The gluon content of the photon is extracted and found to rise with decreasing x_gamma.

2 data tables

Inclusive gamma-p cross section for charged particles in the photoproduction data.

The measured differential pseudorapidity distribution for inclusive chargedparticle production.


Measurement of the top quark pair production cross-section in p anti-p collisions using multijet final states

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 012001, 1999.
Inspire Record 475565 DOI 10.17182/hepdata.42156

We have studied tbar-t production using multijet final states in pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity of 110.3 pb(-1). Each of the top quarks with these final states decays exclusively to a bottom quark and a W boson, with the W bosons decaying into quark-antiquark pairs. The analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on the tbar-t production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with previous D0 measurements, where one or both of the W bosons decay leptonically, gives a tbar t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.

1 data table

The second value is the combination of the data reported here combined withthe previous result of D0 reported in PRL 79(1997)1203.


Probing hard color singlet exchange in p anti-p collisions at S**(1/2) = 630-GeV and 1800-GeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Lett.B 440 (1998) 189-202, 1998.
Inspire Record 476389 DOI 10.17182/hepdata.42131

We present results on dijet production via hard color-singlet exchange in proton-antiproton collisions at root-s = 630 GeV and 1800 GeV using the DZero detector. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, separation in pseudorapidity between the two highest transverse energy jets, and proton-antiproton center-of-mass energy. The results are consistent with a color-singlet fraction that increases with an increasing fraction of quark-initiated processes and inconsistent with two-gluon models for the hard color-singlet.

2 data tables

Colour-singlet fraction at 1.8 TeV.

Ratio of colour-singlet fractions between 630 and 1800 GeV.


Search for anomalous photonic events with missing energy in e+ e- collisions at s**(1/2) = 130-GeV, 136-GeV and 183-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 8 (1999) 23-40, 1999.
Inspire Record 477626 DOI 10.17182/hepdata.49342

Photonic events with large missing energy have been observed in $e^+ e^-$ collisions at centre-of-mass energies of 130, 136 and 183 GeV collected in 1997 using the OPAL detector at LEP. Results are presented for event topologies with a single photon and missing transverse energy or with an acoplanar photon pair. Cross-section measurements are performed within the kinematic acceptance of each selection. These results are compared with the expectations from the Standard Model process $e^+e^-$ $\rightarrow \nu \bar{\nu +}$ photon(s). No evidence is observed for new physics contributions to these final states. Using the data at $\sqrt{s} = 183$ GeV, upper limits on $\sigma$ ($e^+ e^-$ $\rightarrow$ X.Y)*BR(X $\to \textrm{Y}_{\gamma}$) and $\sigma$ ($e^+ e^-$ $\rightarrow$ X.X)*BR$^2$ (X $\to \textrm{Y}_{\gamma}$) are derived for the case of stable and invisible Y. These limits apply to single and pair production of excited neutrinos $(\textrm{X} = \nu^*, \textrm{Y} = \nu)$, to neutralino production $(\textrm{X} = \overline{\chi}^0_2, \textrm{Y} = \overline{\chi}^0_1)$ and to supersymmetric models in which $X = \overline{\chi}^0_1$ and $Y=\overline{\textrm{G}}$ is a light gravitino.

3 data tables

No description provided.

No description provided.

The data for sqrt(s) = 130 and 136 GeV are combination of present data and previous one (see EPJ C2, 607), the data for sqrt(s)=161 and 172 GeV is from thesame publication.


Version 2
Forward jet and particle production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 538 (1999) 3-22, 1999.
Inspire Record 476801 DOI 10.17182/hepdata.44172

Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross-sections are presented as a function of Bjorken-x for forward jets produced with a polar angle to the proton direction, theta, in the range 7 < theta < 20 degrees. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken-x, in the range 5 < theta < 25 degrees, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution.

11 data tables

Forward Jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Forward Di-jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Data from Figure 3a on charged particle production

More…

Diffractive dijet production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 6 (1999) 421-436, 1999.
Inspire Record 474949 DOI 10.17182/hepdata.44206

Interactions of the type ep -> eXY are studied, where the component X of the hadronic final state contains two jets and is well separated in rapidity from a leading baryonic system Y. Analyses are performed of both resolved and direct photoproduction and of deep-inelastic scattering with photon virtualities in the range 7.5 < Q^2 < 80 GeV^2. Cross sections are presented where Y has mass M_Y < 1.6 GeV, the squared four-momentum transferred at the proton vertex satisfies |t| < 1 GeV^2 and the two jets each have transverse momentum p^jet_T > 5 GeV relative to the photon direction in the rest frame of X. Models based on a factorisable diffractive exchange with a gluon dominated structure, evolved to a scale set by the transverse momentum p^hat_T of the outgoing partons from the hard interaction, give good descriptions of the data. Exclusive qqbar production, as calculated in perturbative QCD using the squared proton gluon density, represents at most a small fraction of the measured cross section. The compatibility of the data with a breaking of diffractive factorisation due to spectator interactions in resolved photoproduction is investigated.

6 data tables

Transverse momentum distribution for two jet production in photoproduction events (one entry per jet).

Transverse momentum distribution for two jet production in DIS events (one entry per jet).

Differential pseudo rapidity distribution in the lab frame for photoproduction data (one entry per jet).

More…

Upsilon dipion transitions at energies near the Upsilon(4S).

The CLEO collaboration Glenn, S. ; Kwon, Y. ; Lyon, Adam L. ; et al.
Phys.Rev.D 59 (1999) 052003, 1999.
Inspire Record 474676 DOI 10.17182/hepdata.47202

Using a data sample collected with the CLEO II detector at CESR, we have searched for dipion transitions between pairs of $\Upsilon$ resonances at energies near the $\Upsilon(4S)$. We obtain upper limits $B(\Upsilon(4S)\to \Upsilon(2S)\pi^+\pi^-) < 3.9 \times 10^{-4}$ and $B(\Upsilon(4S)\to \Upsilon(1S)\pi^+\pi^-) < 1.2 \times 10^{-4}$. We also observe the transitions $\Upsilon(3S)\to \Upsilon(1S)$, $\Upsilon(3S)\to \Upsilon(2S)$, and $\Upsilon(2S)\to \Upsilon(1S)$, from which we measure the cross-sections for the radiative processes $e^+e^- \to \Upsilon(3S)\gamma$ and $e^+e^- \to \Upsilon(2S)\gamma$.

1 data table

The cross sections are averaged from the ones obtained for E+ E- --> GAMMA UPSI(nS) < PI+ PI- UPSI(mS) < MU+ MU- > > and E+ E- --> GAMMA UPSI(nS) < PI+ PI-UPSI(mS) < E+ E- > > channels with n=2,3, m=1,2.


A measurement of R(b) using a double tagging method.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 8 (1999) 217-239, 1999.
Inspire Record 476786 DOI 10.17182/hepdata.49348

The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.

1 data table

Second systematic error depends on Rc=Delta(R_c)/R_c ratio, where Delta(R_c) is the deviation of R_c from the value 0.172 predicted by the Standard Model.


Multi-jet event rates in deep inelastic scattering and determination of the strong coupling constant.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 6 (1999) 575-585, 1999.
Inspire Record 473521 DOI 10.17182/hepdata.44216

Jet event rates in deep inelastic ep scattering at HERA are investigated applying the modified JADE jet algorithm. The analysis uses data taken with the H1 detector in 1994 and 1995. The data are corrected for detector and hadronization effects and then compared with perturbative QCD predictions using next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2) is determined evaluating the jet event rates. Values of alpha_S(Q^2) are extracted in four different bins of the negative squared momentum transfer~$\qq$ in the range from 40 GeV2 to 4000 GeV2. A combined fit of the renormalization group equation to these several alpha_S(Q^2) values results in alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).

3 data tables

Measured (2+1) jet event rates using the modified JADE algorithm (C=MEAS), corrected to the hadron (C=HAD) and to the parton (C=PAR) level. The variable Z(p) is defined as the minimum (for i=1,2) of. (E_jet,i*(1-cos(theta_jet,i)/SUM(j=1,2)(E_jet,j*(1-cos(theta,j)).

ALPHAS at different Q2 values. The TOT error is the total error.

ALPHAS extrapolated to the Z0 mass. The second DSYS (systematic) error is from the jet finding alogrithm.


The Inclusive jet cross-section in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 2451-2456, 1999.
Inspire Record 473457 DOI 10.17182/hepdata.42154

We have made a precise measurement of the central inclusive jet cross section at sqrt(s) = 1.8 TeV. The measurement is based on an integrated luminosity of 92 pb-1 collected at the Fermilab Tevatron pbar-p Collider with the D-Zero detector. The cross section, reported as a function of jet transverse energy (ET >= 60 GeV) in the pseudorapidity interval |eta| <= 0.5, is in good agreement with predictions from next-to-leading order quantum chromodynamics.

2 data tables

Inclusive cross section for ABS(ETARAP)<0.5. The quoted systematic (DSYS) errors do not include the luminosity uncertainty of 6.1 PCT.

Inclusive cross section for 0.1<=ABS(ETARAP)<=0.7. Data are taken from the AIP E-PAPS ftp site shown above. The quoted (DSYS) errors are the total systematic errors including the luminosity uncertainty.